
NaluWindUtils Documentation
Release v0.1.0

Shreyas Ananthan, Marc Henry de Frahan

Sep 17, 2019

CONTENTS

I User Manual 3

1 Introduction 5
1.1 Installing NaluWindUtils . 5
1.2 General Usage . 9

2 Tutorials 11
2.1 Pre-processing for ABL precursor runs . 11
2.2 Wind-farm mesh refinement for Actuator Line simulation using Percept 15

3 nalu_preprocess – Nalu Preprocessing Utilities 19
3.1 Command line invocation . 20
3.2 Common input file options . 20
3.3 init_abl_fields . 21
3.4 mesh_local_refinement . 22
3.5 init_channel_fields . 24
3.6 create_bdy_io_mesh . 24
3.7 move_mesh . 25
3.8 rotate_mesh . 25
3.9 generate_planes . 26

4 nalu_postprocess – Nalu Post-processing Utilities 29
4.1 Command line invocation . 29
4.2 Common input file options . 30
4.3 abl_statistics . 30

5 wrftonalu – WRF to Nalu Convertor 31
5.1 Command line invocation . 31

6 abl_mesh – Block HEX Mesh Generation 33
6.1 Command line invocation . 33
6.2 Common Input File Parameters . 33
6.3 Structured Mesh Generation . 34
6.4 Limitations . 35
6.5 Converting Plot3D to Exodus-II . 35

7 slice_mesh – Sampling plane generation 37
7.1 Command line invocation . 37

8 boxturb – Turbulence box utility 39
8.1 Command line invocation . 39
8.2 Sample input file . 39

i

II Developer Manual 41

9 Introduction 43
9.1 Version Control System . 43
9.2 Building API Documentation . 43
9.3 Contributing . 43

10 Nalu Pre-processing Utilities 45
10.1 Task Construction Phase . 45
10.2 Task Initialization Phase . 45
10.3 Task Execution Phase . 46
10.4 Task Destruction Phase . 46
10.5 Registering New Utility . 46

11 NaluWindUtils API Documentation 47
11.1 Core Utilities . 47
11.2 Pre-processing Utilities . 52
11.3 Meshing Utilities . 62

III Indices and Tables 65

Index 69

ii

NaluWindUtils Documentation, Release v0.1.0

Nalu wind-utils is a companion software library to Nalu-Wind — a generalized, unstructured, massively parallel,
low-Mach flow solver for wind energy applications. As the name indicates, this software repository provides various
meshing, pre- and post-processing utilities for use with the Nalu CFD code to aid setup and analysis of wind energy
LES problems. This software is licensed under Apache License Version 2.0 open-source license.

The source code is hosted and all development is coordinated through the Github repository under the Exawind orga-
nization umbrella. The official documentation for all released and development versions are hosted on ReadTheDocs.
Users are welcome to submit issues, bugs, or questions via the issues page. Users are also encouraged to contribute to
the source code and documentation using pull requests using the normal Github fork and pull request workflow.

This documentation is divided into two parts:

User Manual

Directed towards end-users, this part provides detailed documentation regarding installation and usage of
the various utilities available within this library. Here you will find a comprehensive listing of all available
utilties, and information regarding their usage and current limitations that the users must be aware of.

Developer Manual

The developer guide is targeted towards users wishing to extend the functionality provided within this
library. Here you will find details regarding the code structure, API supported by various classes, and
links to source code documentation extracted using Doxygen.

Acknowledgements

This software is developed by researchers at NREL and Sandia National Laboratories with funding from DOE’s
Exascale Computing Project and DOE WETO Atmosphere to electrons (A2e) research initiative.

CONTENTS 1

http://nalu-wind.readthedocs.io/en/latest/
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/exawind/wind-utils
https://github.com/NaluCFD
https://github.com/NaluCFD
http://naluwindutils.readthedocs.io/en/latest/
https://github.com/exawind/wind-utils/issues
https://github.com/exawind/wind-utils/pulls
https://guides.github.com/activities/forking/
https://www.nrel.gov
http://www.sandia.gov
https://exascaleproject.org
https://a2e.energy.gov

NaluWindUtils Documentation, Release v0.1.0

2 CONTENTS

Part I

User Manual

3

CHAPTER

ONE

INTRODUCTION

This section provides a general overview of NaluWindUtils and describes features common to all utilities available
within this package.

1.1 Installing NaluWindUtils

NaluWindUtils is written using C++ and Fortran and depends on several packages for compilation. Every effort is
made to keep the list of third party libraries (TPLs) similar to the Nalu dependencies. Therefore, users who have
successfully built Nalu on their systems should be able to build NaluWindUtils without any additional software. The
main dependencies are listed below:

1. Operating system — NaluWindUtils has been tested on Linux and Mac OS X operating systems.

2. C++ compiler — Like Nalu, this software package requires a recent version of the C++ compiler that sup-
ports the C++11 standard. The build system has been tested with GNU GCC, LLVM/Clang, and Intel suite of
compilers.

3. Trilinos Project — Particularly the Sierra ToolKit (STK) and Seacas packages for interacting with Exodus-II
mesh and solution database formats used by Nalu.

4. YAML C++ – YAML C++ parsing library to process input files.

Users are strongly encouraged to use the Spack package manager to fetch and install Trilinos along with all its depen-
dencies. Spack greatly simplifies the process of fetching, configuring, and installing packages without the frustrating
guesswork. Users unfamiliar with Spack are referred to the installation section in the official Nalu documentation
that describes the steps necessary to install Trilinos using Spack. Users unable to use Spack for whatever reason are
referred to Nalu manual that details steps necessary to install all the necessary dependencies for Nalu without using
Spack.

While not a direct build dependency for NaluWindUtils, the users might want to have Paraview or VisIt installed to
visualize the outputs generated by this package.

1.1.1 Compiling from Source

1. If you are on an HPC system that provides Modules Environment, load the necessary compiler modules as well
as any other package modules that are necessary for Trilinos.

2. Clone the latest release of NaluWindUtils from the git repository.

cd ${HOME}/nalu/
git clone https://github.com/NaluCFD/NaluWindUtils.git
cd NaluWindUtils

(continues on next page)

5

http://nalu.readthedocs.io/
https://github.com/trilinos/Trilinos
http://prod.sandia.gov/techlib/access-control.cgi/1992/922137.pdf
https://github.com/jbeder/yaml-cpp
https://spack.io
http://nalu.readthedocs.io/en/latest/source/build_spack.html
http://nalu.readthedocs.io/en/latest/source/build_manually.html
http://www.paraview.org
https://visit.llnl.gov/

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

Create a build directory
mkdir build
cd build

3. Run CMake configure. The examples directory provides two sample configuration scripts for spack and non-
spack builds. Copy the appropriate script into the build directory and edit as necessary for your particular
system. In particular, the users will want to update the paths to the various software libraries that CMake will
search for during the configuration process. Please see CMake Configuration Options for information regarding
the different options available.

The code snippet below shows the steps with the Spack configuration script, replace the file name
doConfigSpack.sh with doconfig.sh for a non-spack environment.

Ensure that `build` is the working directory
cp ../examples/doConfigSpack.sh .
Edit the script with the correct paths, versions, etc.

Run CMake configure
./doConfigSpack.sh -DCMAKE_INSTALL_PREFIX=${HOME}/nalu/install/

4. Run make to build and install the executables.

make # Use -j N if you want to build in parallel
make install # Install the software to a common location

5. Test installation

bash$ ${HOME}/nalu/install/bin/nalu_preprocess -h
Nalu preprocessor utility. Valid options are:
-h [--help] Show this help message
-i [--input-file] arg (=nalu_preprocess.yaml)

Input file with preprocessor options

If you see the help message as shown above, then proceed to General Usage section to learn how to use the compiled
executables. If you see errors during either the CMake or the build phase, please capture verbose outputs from both
steps and submit an issue on Github.

Note:

1. The WRF to Nalu inflow conversion utility is not built by default. Users must explicitly enable compilation of
this utility using the ENABLE_WRFTONALU flag. The default behavior is chose to eliminate the extra depenency
on NetCDF-Fortran package required build this utility. The examples/doConfigSpack.sh provides an
example of how to build the this utility if desired.

2. See Building Documentation for instructions on building a local copy of this user manual as well as API docu-
mentation generated using Doxygen.

3. Run make help to see all available targets that CMake understands to quickly build only the executable you
are looking for.

1.1.2 Building Documentation

Official documentation is available online on ReadTheDocs site. However, users can generate their own copy of the
documentation using the RestructuredText files available within the docs directory. NaluWindUtils uses the Sphinx

6 Chapter 1. Introduction

http://naluwindutils.readthedocs.io/
http://www.sphinx-doc.org/en/stable/

NaluWindUtils Documentation, Release v0.1.0

documentation generation package to generate HTML or PDF files from the rst files. Therefore, the documentation
building process will require Python and Sphinx packages to be installed on your system.

The easiest way to get Sphinx and all its dependencies is to install the Anaconda Python Distribution for the operating
system of your choice. Expert users can use Miniconda to install basic packages and install additional packages like
Sphinx manually within a conda environment.

Doc Generation Using CMake

1. Enable documentation genration via CMake by turning on the ENABLE_SPHINX_DOCS flag.

2. Run make docs to generate the generate the documentation in HTML form.

3. Run make sphinx-pdf to generate the documentation using latexpdf. Note: requires Latex packages
installed in your system.

The resulting documentation will be available in doc/manual/html and doc/manual/latex directories re-
spectively for HTML and PDF builds within the CMake build directory. See also Building API Documentation.

Doc Generation Without CMake

Since CMake will require users to have Trilinos installed, an alternate path is provided to bypass CMake and generate
documentation using Makefile on Linux/OS X systems and make.bat file on Windows systems provided in the
docs/manual directory.

cd docs/manual
To generate HTML documentation
make html
open build/html/index.html

To generate PDF documentation
make latexpdf
open build/latex/NaluWindUtils.pdf

To generate help message
make help

Note: Users can also use pipenv or virtualenv as documented here to manage their python packages without
Anaconda.

1.1.3 CMake Configuration Options

Users can use the following variables to control the CMake behavior during configuration phase. These variables can
be added directly to the configuration script or passed as arguments to the script via command line as shown in the
previous section.

CMAKE_INSTALL_PREFIX
The directory where the compiled executables and libraries as well as headers are installed. For example,
passing -DCMAKE_INSTALL_PREFIX=${HOME}/software will install the executables in ${HOME}/
software/bin when the user executes the make install command.

CMAKE_BUILD_TYPE
Controls the optimization levels for compilation. This variable can take the following values:

1.1. Installing NaluWindUtils 7

https://www.anaconda.com/download/
https://conda.io/miniconda.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/#pipenv-virtual-environments

NaluWindUtils Documentation, Release v0.1.0

Value Typical flags
RELEASE -O2 -DNDEBUG
DEBUG -g
RelWithDebInfo -O2 -g

Example: -DCMAKE_BUILD_TYPE:STRING=RELEASE

Trilinos_DIR
Absolute path to the directory where Trilinos is installed.

YAML_ROOT
Absolute path to the directory where the YAML C++ library is installed.

ENABLE_WRFTONALU
A boolean flag indicating whether the WRF to Nalu conversion utility is to be built along with the C++ utilities.
By default, this utility is not built as it requires the NetCDF-Fortran library support that is not part of the standard
Nalu build dependency. Users wishing to enable this library must make sure that the NetCDF-Fortran library
has been installed and configure the NETCDF_F77_ROOT and NETCDF_DIR appropriately.

NETCDF_F77_ROOT
Absolute path to the location of the NETCDF Fortran 77 library.

NETCDF_DIR
Absolute path to the location of the NETCDF C library.

ENABLE_SPHINX_DOCS
Boolean flag to enable building Sphinx-based documentation via CMake. Default: OFF.

ENABLE_DOXYGEN_DOCS
Boolean flag to enable extract source code documentation using Doxygen. Default: OFF.

ENABLE_SPHINX_API_DOCS
Enable embedding API documentation generated from Doxygen within user and developer manuals. Default:
OFF.

Further fine-grained control of the build environment can be achieved by using standard CMake flags, please see
CMake documentation for details regarding these variables.

CMAKE_VERBOSE_MAKEFILE
A boolean flag indicating whether the build process should output verbose commands when compiling the files.
By default, this flag is OFF and make only shows the file being processed. Turn this flag ON if you want to see
the exact command issued when compiling the source code. Alternately, users can also invoke this flag during
the make invocation as shown below:

bash$ make VERBOSE=1

CMAKE_CXX_COMPILER
Set the C++ compiler used for compiling the code

CMAKE_C_COMPILER
Set the C compiler used for compiling the code

CMAKE_Fortran_COMPILER
Set the Fortran compiler used for compiling the code

CMAKE_CXX_FLAGS
Additional flags to be passed to the C++ compiler during compilation. For example, to enable OpenMP support
during compilation pass -DCMAKE_CXX_FLAGS=" -fopenmp" when using the GNU GCC compiler.

8 Chapter 1. Introduction

https://cmake.org/cmake/help/v3.9/

NaluWindUtils Documentation, Release v0.1.0

CMAKE_C_FLAGS
Additional flags to be passed to the C compiler during compilation.

CMAKE_Fortran_FLAGS
Additional flags to be passed to the Fortran compiler during compilation.

1.2 General Usage

Most utilities require a YAML input file containing all the information necessary to run the utility. The executables
have been configured to look for a default input file name within the run directory, this default filename can be
overridden by providing a custom filename using the -i option flag. Users can use the -h or the --help flag with
any executable to look at various command line options available as well as the name of the default input file as shown
in the following example:

bash$ src/preprocessing/nalu_preprocess -h
Nalu preprocessor utility. Valid options are:

-h [--help] Show this help message
-i [--input-file] arg (=nalu_preprocess.yaml)

Input file with preprocessor options

The output above shows the default input file name as nalu_preprocess.yaml for the nalu_preprocess
utility.

Note: It is assumed that the bin directory where the utilities were installed are accessible via the user’s PATH
variable. Please refer to Installing NaluWindUtils for more details.

1.2. General Usage 9

NaluWindUtils Documentation, Release v0.1.0

10 Chapter 1. Introduction

CHAPTER

TWO

TUTORIALS

2.1 Pre-processing for ABL precursor runs

This tutorial walks through the steps required to create an ABL mesh and initialize the fields for an ABL precursor
run. In this tutorial, you will use the abl_mesh and certain capabilities of nalu_preprocess. The steps covered in this
tutorial are

1. Generate a 1× 1× 1 km HEX block mesh with uniform resolution of 10m in all three directions.

2. Generate a sampling plane at hub-height (90m) where the velocity field will be sampled to force it to a desired
wind speed and direction using a driving pressure gradient source term.

3. Initialize the velocity and temperature field to the desired profile as a function of height, and add perturbations
to the fields to kick-off turbulence generation.

2.1.1 Prerequisites

Before attempting this tutorial, you should have a compiled version of NaluWindUtils. Please consult the Installing
NaluWindUtils section to fetch, configure, and compile the latest version of the source code. You can also download
the input file (abl_setup.yaml) that will be used with abl_mesh and nalu_preprocess executables.

2.1.2 Generate ABL precursor mesh

In this step, we will use the abl_mesh utility to generate 1× 1× 1 km with a uniform resolution of 10m in all three
directions. The domain will span [0, 1000] m in each direction. The relevant section in the input file is shown below

1 #
2 # 1. Generate ABL mesh
3 #
4 nalu_abl_mesh:
5 output_db: abl_1x1x1_10_mesh.exo # output filename
6

7 spec_type: bounding_box # Vertex input type
8

9 vertices:
10 - [0.0, 0.0, 0.0] # min corner
11 - [1000.0, 1000.0, 1000.0] # max corner
12

13 mesh_dimensions: [100, 100, 100] # number of elements in each direction
14

15

11

NaluWindUtils Documentation, Release v0.1.0

With this section saved in the input file abl_setup.yaml, the sample interaction is shown below

$ abl_mesh -i abl_setup.yaml

Nalu ABL Mesh Generation Utility
Input file: abl_setup.yaml
HexBlockBase: Registering parts to meta data

Mesh block: fluid
Num. nodes = 1030301; Num elements = 1000000

Generating node IDs...
Creating nodes... 10% 20% 30% 40% 50% 60% 70% 80% 90%
Generating element IDs...
Creating elements... 10% 20% 30% 40% 50% 60% 70% 80% 90%
Finalizing bulk modifications...
Generating X Sideset: west
Generating X Sideset: east
Generating Y Sideset: south
Generating Y Sideset: north
Generating Z Sideset: terrain
Generating Z Sideset: top
Generating coordinates...
Generating x spacing: constant_spacing
Generating y spacing: constant_spacing
Generating z spacing: constant_spacing

Writing mesh to file: abl_1x1x1_10_mesh.exo

Memory usage: Avg: 553.148 MB; Min: 553.148 MB; Max: 553.148 MB

2.1.3 Initializing fields and sampling planes

In the next step we will use nalu_preprocess to setup the fields necessary for a precursor simulation. The relevant
section of the input file is shown below

1 #
2 # 2. Preprocessing
3 #
4 nalu_preprocess:
5 input_db: abl_1x1x1_10_mesh.exo
6 output_db: abl_1x1x1_10.exo
7

8 tasks:
9 - init_abl_fields

10

11 init_abl_fields:
12 fluid_parts: [fluid]
13

14 velocity:
15 heights: [0.0, 1000.0]
16 values:
17 - [7.250462296293199, 3.380946093925596, 0.0]
18 - [7.250462296293199, 3.380946093925596, 0.0]
19 perturbations:
20 reference_height: 50.0
21 amplitude: [1.0, 1.0]
22 periods: [4.0, 4.0]
23

(continues on next page)

12 Chapter 2. Tutorials

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

24 temperature:
25 heights: [0, 650.0, 750.0, 1000.0]
26 values: [300.0, 300.0, 308.0, 308.75]
27 perturbations:
28 amplitude: 0.8
29 cutoff_height: 600.0
30 skip_periodic_parts: [west, east, north, south]

The following actions are performed

1. Lines 14–18: Initialize a constant velocity field such that the wind speed is 8.0 m/s along 245∘ compass direction.

2. Lines 24–26: A constant temperature field of 300K till 650m and then a capping inversion between 650m to
750m and a temperature gradient of 0.003 K/m above the capping inversion zone.

3. Pertubations to the velocity (lines 19–22) and temperature field (lines 27–30) to kick off turbulence generation
during the precursor run. The velocity field perturbations are similar to those generated in SOWFA for ABL
precursor runs.

4. The mesh generated in the previous step is used as input (line 5), and a new file is written out with the new fields
and the sampling plane (line 6).

Output from the execution of nalu_preprocess with this input file is shown below

$ nalu_preprocess -i abl_setup.yaml

Nalu Preprocessing Utility
Input file: abl_setup.yaml
Found 1 tasks

- init_abl_fields

Performing metadata updates...
Metadata update completed
Reading mesh bulk data... done.

--
Begin task: init_abl_fields
Generating ABL fields
End task: init_abl_fields

All tasks completed; writing mesh...
Exodus results file: abl_1x1x1_10.exo

Memory usage: Avg: 786.082 MB; Min: 786.082 MB; Max: 786.082 MB

2.1.4 Using ncdump to examine mesh metadata

ncdump is a NetCDF utility that is built and installed as a depedency of Trilinos. Since Trilinos is a dependency of
NaluWindUtils, you should have ncdump available in your path if Trilinos and its dependencies were loaded properly
(either via spack or module load). ncdump is useful to quickly examine the Exodus file metadata from the
command line. Invoke the command with -h option to quickly see the number of nodes and elements in a mesh

$ ncdump -h abl_1x1x1_10.exo
netcdf abl_1x1x1_10 {
dimensions:

len_string = 33 ;

(continues on next page)

2.1. Pre-processing for ABL precursor runs 13

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

len_line = 81 ;
four = 4 ;
num_qa_rec = 1 ;
num_info = 2 ;
len_name = 33 ;
num_dim = 3 ;
time_step = UNLIMITED ; // (1 currently)
num_nodes = 1040502 ;
num_elem = 1000000 ;
num_el_blk = 1 ;
num_node_sets = 1 ;
num_side_sets = 6 ;
num_el_in_blk1 = 1000000 ;
num_nod_per_el1 = 8 ;
num_nod_ns1 = 10201 ;
num_side_ss1 = 10000 ;
num_df_ss1 = 40000 ;
num_side_ss2 = 10000 ;
num_df_ss2 = 40000 ;
num_side_ss3 = 10000 ;
num_df_ss3 = 40000 ;
num_side_ss4 = 10000 ;
num_df_ss4 = 40000 ;
num_side_ss5 = 10000 ;
num_df_ss5 = 40000 ;
num_side_ss6 = 10000 ;
num_df_ss6 = 40000 ;
num_nod_var = 4 ;

For the ABL precursor mesh generated using abl_mesh we have 1 mesh block (num_el_blk) that has one million
elements (num_el_in_blk1) composed of Hexahedral elements with 8 nodes per element (num_nod_per_el1).
There are 4 nodal field variables (num_nod_var) stored in this database that were created by nalu_preprocess
utility. Finally, there are 6 sidesets (num_side_sets) each with 10,000 faces, and one node set (num_node_sets)
that contains 10201 nodes that were created as a sampling plane at hub height of 90m during the pre-processing step.

Use the -v flag with the desired variable names (separated by commas) to examine the contents of those variables.
For example, to output the mesh blocks (eb_names), sidesets or boundaries (ss_names), nodal (name_nod_var)
and element fields (name_elem_var) present in an Exodus database:

$ ncdump -v eb_names,ss_names,name_nod_var abl_1x1x1_10.exo
#
OUTPUT TRUNCATED !!!
#
data:

eb_names =
"fluid" ;

ss_names =
"west",
"east",
"south",
"north",
"terrain",
"top" ;

(continues on next page)

14 Chapter 2. Tutorials

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

name_nod_var =
"temperature",
"velocity_x",
"velocity_y",
"velocity_z" ;

As seen in the output for name_nod_var, Exodus file contains temperature, a scalar field, and velocity, a
vector field. Internally, exodus stores each component of a vector or tensor field as a separate variable. The mesh block
is called fluid can should be referred as such in the pre-processing tasks or within the Nalu input file. As indicated
in the dimensions, this file contains one time_step, you can use -v time_whole to determine the timesteps
that are currently stored in the Exodus database.

2.2 Wind-farm mesh refinement for Actuator Line simulation using
Percept

This tutorial demonstrates the workflow for refining ABL meshes for use with actuator line simulations using the
Percept mesh adaptivity tool. We will start with the precursor mesh and add nested zones of refinement around turbines
of interest so that the wakes are captured with adequate resolution necessary to predict the impact on downstream
turbine performance. We will perform the following steps

1. Use nalu_preprocess to tag elements within the mesh that must be refined. In this exercise, we will
perform two levels of refinement where the second level is nested within the first refinement zone. This step
creates a turbine_refinement_field, an element field, in the Exodus database. The refinement field is
a scalar with a value ranging between 0 and 1. We will use this field as a threshold to control the regions where
the refinement is applied by the mesh_adapt utility in Percept.

2. Invoke Percept’s mesh_adapt utility twice to perform two levels of refinement. Each invocation will use the
turbine_refinement_field, created in the previous step, to determine the region where refinement is
applied, the threshold is changed using YAML-formatted input files to mesh_adapt during each call.

2.2.1 Prerequisites

To complete this tutorial you will need the Exodus mesh (abl_1x1x1_10_mesh.exo) generated in the the previous
tutorial. You will also need the input file for nalu_preprocess (abl_refine.yaml)

2.2.2 Tag mesh regions for refinement

In this step we will use nalu_preprocess to create a refinement field that will be used by mesh_adapt to
determine which elements are selected for refinement. The input file that performs this action is shown below

1 mesh_local_refinement:
2 fluid_parts: [fluid]
3 write_percept_files: true
4 percept_file_prefix: adapt
5 search_tolerance: 11.0
6

7 turbine_diameters: 80.0
8 turbine_heights: 70.0
9 turbine_locations:

10 - [550.0, 350.0, 0.0]

(continues on next page)

2.2. Wind-farm mesh refinement for Actuator Line simulation using Percept 15

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

11 - [400.0, 500.0, 0.0]
12 orientation:
13 type: wind_direction
14 wind_direction: 245.0
15 refinement_levels:
16 - [4.0, 4.0, 2.0, 2.0]
17 - [3.0, 3.0, 1.2, 1.2]

The mesh blocks targeted for refinement is provided as a list to the fluid_parts parameter (line 2),
turbine_locations list the base locations of the turbines in the wind farm that are being simulated,
refinement_levels contain a list of length equal to the number of nested refinement levels. Each entry in
this list contains an array of four non-dimensional lengths: the upstream, downstream, lateral, and vertical extent of
the refinement zones (as a multiple of rotor diameters) with respect to the rotation center of the turbine. The orienta-
tion of the refinement boxes is determined by the parameters provided within the orientation sub-dictionary. In
the current example, the boxes will be oriented along the wind direction (245∘) to match the ABL wind direction at
hub-height used in the previous tutorial.

Note: It is recommended that the search_tolerance parameter in mesh_local_refinement section be set
slightly larger than the coarset mesh resolution in the base ABL mesh chosen for refinement. This prevents jagged
boundaries around the refinement zones as a result of roundoff and truncation errors. In our current example, this
parameter was set to 11m based on the fact that the base mesh has a uniform resolution of 10m.

The output of nalu_preprocess is shown below

$ nalu_preprocess -i abl_refine.yaml

Nalu Preprocessing Utility
Input file: abl_refine.yaml
Found 1 tasks

- mesh_local_refinement

Performing metadata updates...
Metadata update completed
Reading mesh bulk data... done.

--
Begin task: mesh_local_refinement
Processing percept field: turbine_refinement_field
Writing percept input files...

adapt1.yaml
adapt2.yaml

Sample percept command line:
mesh_adapt --refine=DEFAULT --input_mesh=mesh0.e --output_mesh=mesh1.e --RAR_
→˓info=adapt1.yaml
End task: mesh_local_refinement

All tasks completed; writing mesh...
Exodus results file: mesh0.e

Memory usage: Avg: 723.312 MB; Min: 723.312 MB; Max: 723.312 MB

16 Chapter 2. Tutorials

NaluWindUtils Documentation, Release v0.1.0

2.2.3 Refine using Percept

After executing nalu_preprocess we should have mesh0.e, the Exodus database used as input for
mesh_adapt and two YAML files adapt1.yaml and adapt2.yaml that contain the thresholds for each level
of refinement. To invoke Percept in serial mode, execute the following command

Refine the first level
mesh_adapt --refine=DEFAULT --input_mesh=mesh0.e --output_mesh=mesh1.e --RAR_
→˓info=adapt1.yaml --progress_meter=1
Refine the second level
mesh_adapt --refine=DEFAULT --input_mesh=mesh1.e --output_mesh=mesh2.e --RAR_
→˓info=adapt2.yaml --progress_meter=1

After successful execution of the two invocations of mesh_adapt, the refined mesh for use with actuator line wind
farm simulations is saved in mesh2.e. Percept-based refinement creates pyramid and tetrahedral elements at the
refinement interfaces. These additional elements are added to new mesh blocks (parts in STK parlance) that must be
included in the Nalu input file for simulation. Use ncdump (see previous tutorial) to examine the names of the new
mesh blocks created by Percept.

$ ncdump -v eb_names mesh2.e
#
OUTPUT TRUNCATED !!!
#
data:

eb_names =
"fluid",
"fluid.pyramid_5._urpconv",
"fluid.tetrahedron_4._urpconv",
"fluid.pyramid_5._urpconv.Tetrahedron_4._urpconv" ;

For large meshes, parallel execution of Percept’s mesh_adapt utility is recommended. A sample command line is
shown below

Example mesh_adapt invocation in parallel.
mpiexec -np ${NPROCS} mesh_adapt \

--refine=DEFAULT \
--RAR_info=adapt1.yaml \
--progress_meter=1 \
--input_mesh=mesh0.e \
--output_mesh=mesh1.e \
--ioss_read_options="auto-decomp:yes" \
--ioss_write_options="large,auto-join:yes"

We pass auto-join:yes to IOSS write options so that the final mesh is combined for subsequent use with a
different number of MPI ranks with Nalu.

2.2.4 Troubleshooting tips

• Percept mesh_adapt will hang if it runs out of memory without any error message. The user must ensure that
enough memory is available to perform the refinements. Parallel execution on a larger number of nodes is the
best solution to this problem.

• Percept creates long part names for the new mesh blocks it generates. These names are sometimes longer
than the 32 characters allowed by SEACAS utilities for Exodus strings. Exodus mesh reading process will

2.2. Wind-farm mesh refinement for Actuator Line simulation using Percept 17

NaluWindUtils Documentation, Release v0.1.0

automatically truncate these names during read, but STK will throw an error if the full name is used to refer to
the part. The user must take care to truncate the names to 32 characters in the Nalu input file.

• Percept declares additional parts of form <BASE_PART>.pyramid_5._urpconv.Tetrahedron_4.
_urpconv in anticipation of possible refinement of pyramid elements into pyramids and tetrahedrons. How-
ever, the nested refinement strategy does not result in pyramids being refined and, therefore, this part remains
empty. Currently, SEACAS and STK will throw an error if the user attempts to include this part in the Nalu
input file during simulations.

• When using mesh_adapt in parallel, appropriate IOSS read/write options must be specified to allow automatic
decomposition of an undecomposed mesh and subsequent rejoin after parallel exection. Failure to provide
appropriate options will lead to error during execution of mesh_adapt.

18 Chapter 2. Tutorials

CHAPTER

THREE

NALU_PREPROCESS – NALU PREPROCESSING UTILITIES

This utility loads an input mesh and performs various pre-processing tasks so that the resulting output database can be
used in a wind LES simulation. Currently, the following tasks have been implemented within this utility.

Task type Description
init_abl_fields Initialize ABL velocity and temperature fields
init_channel_fields Initialize channel velocity fields
create_bdy_io_mesh Create an I/O transfer mesh for sampling inflow planes
mesh_local_refinement Local refinement around turbines for wind farm simulations
rotate_mesh Rotate mesh
move_mesh Translate mesh by a given offset vector

Warning: Not all tasks are capable of running in parallel. Please consult documentation of indi-
vidual tasks to determine if it is safe to run it in parallel using MPI. It might be necessary to set
automatic_decomposition_type when running in parallel.

The input file (download) must contain a nalu_preprocess section as shown below. Input options for the indi-
vidual tasks are provided as sub-sections within nalu_preprocess with the corresponding task names provided un-
der tasks. For example, in the sample shown below, the program will expect to see two sub-sections, namely
init_abl_fields and generate_planes based on the list of tasks shown in lines 22-23.

1 # -*- mode: yaml -*-
2 #
3 # Nalu Preprocessing Utility - Example input file
4 #
5

6 # Mandatory section for Nalu preprocessing
7 nalu_preprocess:
8 # Name of the input exodus database
9 input_db: abl_mesh.g

10 # Name of the output exodus database
11 output_db: abl_mesh_precursor.g
12

13 # Flag indicating whether the database contains 8-bit integers
14 ioss_8bit_ints: false
15

16 # Flag indicating mesh decomposition type (for parallel runs)
17 # automatic_decomposition_type: rcb
18

19 # Nalu preprocessor expects a list of tasks to be performed on the mesh and

(continues on next page)

19

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

20 # field data structures
21 tasks:
22 - init_abl_fields
23 - generate_planes

3.1 Command line invocation

mpiexec -np <N> nalu_preprocess -i [YAML_INPUT_FILE]

-i, --input-file
Name of the YAML input file to be used. Default: nalu_preprocess.yaml.

3.2 Common input file options

input_db
Path to an existing Exodus-II mesh database file, e.g.., ablNeutralMesh.g

output_db
Filename where the pre-processed results database is output, e.g., ablNeutralPrecursor.g

automatic_decomposition_type
Used only for parallel runs, this indicates how the a single mesh database must be decomposed amongst the MPI
processes during initialization. This option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

Value Description
rcb recursive coordinate bisection
rib recursive inertial bisection
linear elements in order first n/p to proc 0, next to proc 1.
cyclic elements handed out to id % proc_count

tasks
A list of task names that define the various pre-processing tasks that will be performed on the input mesh
database by this utility. The program expects to find additional sections with headings matching the task names
that provide additional inputs for individual tasks. By default, the task names found within the list should
correspond to one of the task types discussed earlier in this section. If the user desires to use custom names,
then the exact task type should be provided with a type within the task section. A specific use-case where this
is useful is when the user desires to rotate the mesh, perform additional operations, and, finally, rotate it back to
the original orientation.

1 tasks:
2 - rotate_mesh_ccw # Rotate mesh such that sides align with XYZ axes
3 - generate_planes # Generate sampling planes using bounding box
4 - rotate_mesh_cw # Rotate mesh back to the original orientation
5

6 rotate_mesh_ccw:
7 task_type: rotate_mesh
8 mesh_parts:
9 - unspecified-2-hex

10

(continues on next page)

20 Chapter 3. nalu_preprocess – Nalu Preprocessing Utilities

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

11 angle: 30.0
12 origin: [500.0, 0.0, 0.0]
13 axis: [0.0, 0.0, 1.0]
14

15 rotate_mesh_cw:
16 task_type: rotate_mesh
17 mesh_parts:
18 - unspecified-2-hex
19 - zplane_0080.0 # Rotate auto generated parts also
20

21 angle: -30.0
22 origin: [500.0, 0.0, 0.0]
23 axis: [0.0, 0.0, 1.0]

transfer_fields
A Boolean flag indicating whether the time histories of the fields available in the input mesh database must be
transferred to the output database. Default: false.

ioss_8bit_ints
A Boolean flag indicating whether the output database must be written out with 8-bit integer support. Default:
false.

3.3 init_abl_fields

This task initializes the vertical velocity and temperature profiles for use with an ABL precursor simulations based on
the parameters provided by the user and writes it out to the output_db. It is safe to run init_abl_fields in
parallel. A sample invocation is shown below

1 init_abl_fields:
2 fluid_parts: [fluid]
3

4 temperature:
5 heights: [0, 650.0, 750.0, 10750.0]
6 values: [280.0, 280.0, 288.0, 318.0]
7

8 # Optional section to add random perturbations to temperature field
9 perturbations:

10 amplitude: 0.8 # in Kelvin
11 cutoff_height: 600.0 # Perturbations below capping inversion
12 skip_periodic_parts: [east, west, north, south]
13

14 velocity:
15 heights: [0.0, 10.0, 30.0, 70.0, 100.0, 650.0, 10000.0]
16 values:
17 - [0.0, 0.0, 0.0]
18 - [4.81947, -4.81947, 0.0]
19 - [5.63845, -5.63845, 0.0]
20 - [6.36396, -6.36396, 0.0]
21 - [6.69663, -6.69663, 0.0]
22 - [8.74957, -8.74957, 0.0]
23 - [8.74957, -8.74957, 0.0]
24

25 # Optional section to add sinusoidal streaks to the velocity field
26 perturbations:

(continues on next page)

3.3. init_abl_fields 21

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

27 reference_height: 50.0 # Reference height for damping
28 amplitude: [1.0, 1.0] # Perturbation amplitudes in Ux and Uy
29 periods: [4.0, 4.0] # Num. periods in x and y directions

fluid_parts
A list of element block names where the velocity and/or temperature fields are to be initialized.

temperature
A YAML dictionary containing two arrays: heights and the corresponding values at those heights. The
data must be provided in SI units. No conversion is performed within the code.

The temperature section can contain an optional section perturbations (lines 8-12) that will add fluctua-
tions to the temperature field. It requires three parameters: 1. the amplitude of oscillations (in degrees Kelvin),
2. the cutoff height above which perturbations are not added, and a list of sidesets where the perturbations
should not be added. It is important that the perturbations are not added to the periodic sidesets, otherwise the
Nalu simulations will show spurious flow structures.

velocity
A YAML dictionary containing two arrays: heights and the corresponding values at those heights. The
data must be provided in SI units. No conversion is performed within the code. The values in this case are two
dimensional lists of shape [nheights, 3] where nheights is the length of the heights array provided.

Like temperature, the user can add sinusoidal streaks to the velocity field to trigger the turbulence generation –
see lines 25-29. The implementation follows the method used in SOWFA.

Note: Only one of the entries velocity or temperature needs to be present. The program will skip initialization
of a particular field if it cannot find an entry in the input file. This can be used to speed up the execution process if the
user intends to initialize uniform velocity throughout the domain within Nalu.

3.4 mesh_local_refinement

This task creates an error indicator field that can be used to locally refine the mesh using Percept. This is used to refine
the wind farm simulation mesh around the turbines to capture the wakes with the desired resolution while performing
the ABL simulations with a coarser mesh resolution.

Example Percept invocation

Load necessary percept modules ...
mpiexec -np ${NPROCS} mesh_adapt \

--refine=DEFAULT \
--RAR_info=adapt1.yaml \
--progress_meter=1 \
--input_mesh=mesh0.e \
--output_mesh=mesh1.e \
--ioss_read_options="auto-decomp:yes" \
--ioss_write_options="large,auto-join:yes"

Note:

1. This utility just creates a field that will be used by percept to perform the refinement. The user must execute
percept to actually refine the mesh.

22 Chapter 3. nalu_preprocess – Nalu Preprocessing Utilities

NaluWindUtils Documentation, Release v0.1.0

2. The mesh_adapt utility from Percept must be called once for each level of refinement desired. Each step will
use the input file created by the pre-processing utility. However, the mesh files created by percept during the
intermediate levels are temporary files used for the next invocation of percept and can be discarded. Only the
final mesh file is used with Nalu for wind farm simulations. In the above example increment adaptN.yaml
and meshN.e for input and output appropriately.

3. Currently, mesh_adapt utility requires the meshes to be numbered serially. So it is recommended that the
user start with mesh0.e and then name the output files mesh1.e and so on for each level of refinement.

4. For the final refinement level the auto-join option is useful to obtain a single mesh file instead of decom-
posed files for the number of MPI ranks Percept was invoked on. If you leave out the auto-join option for
intermediate levels, make sure you don’t provide auto-decomp option for the next level of refinement.

5. Percept uses a lot of memory, so make sure that mesh_adapt is invoked in parallel over a large number of
MPI ranks, preferably under subscribing cores on a node.

6. Always use progress_meter to see if the job is progressing as expected. mesh_adapt can hang without
warning if it runs out of memory.

7. Mesh refinement process will create new blocks especially containing tets and pyramids. Make sure these are
added to the Nalu-Wind input file. Use ncdump -v eb_names to see the new parts that were created by the
refinement process.

mesh_local_refinement:
fluid_parts: [fluid]
write_percept_files: true
percept_file_prefix: adapt
search_tolerance: 11.0

turbine_locations:
- [200.0, 200.0, 0.0]
- [230.0, 300.0, 0.0]

turbine_diameters: 15.0 # Provide a list for variable diameters
turbine_heights: 50.0 # Provide a list for variable tower heights
orientation:
type: wind_direction
wind_direction: 225.0

refinement_levels:
- [7.0, 12.0, 7.0, 7.0]
- [5.0, 10.0, 5.0, 5.0]
- [3.0, 6.0, 3.0, 3.0]
- [1.5, 3.0, 1.2, 1.2]

turbine_diameters
A list of turbine diameters for the turbines in the wind farm. If all the turbines in the wind farm have the same
rotor, then the input can be a single scalar entry as shown in the example. Otherwise, the list passed must have
the same size as the number of entries in turbine_locations.

turbine_heights
The list of tower heights for the turbines in the wind farm. If all the turbines in the wind farm have the same
tower height, then the input can be a single scalar entry as shown in the example. Otherwise, the list passed
must have the same size as the number of entries in turbine_locations.

turbine_locations
The (x, y, z) coordinates of the turbine base in the wind farm.

orientation
The orientation of the refinement boxes. Currently there is only one option available indicated by type param-

3.4. mesh_local_refinement 23

NaluWindUtils Documentation, Release v0.1.0

eter: wind_direction. For this option, it expects the wind_direction variable to contain the compass
direction in degrees.

refinement_levels
A list of 4 parameters for each nested refinement zone. The three parameters are the distance upstream, distance
downstream, the lateral and vertical extents of the refinement zone. These parameters are non-dimensional and
are internally scaled by the turbine diameters by the utility. The nested boxes must be specified with the largest
box first and the subsequent sizes in descending order.

search_tolerance
The tolerance parameter added when searching for elements enclosed by the refinement box. A value slightly
larger than the coarsest mesh size is recommended.

refine_field_name
The name of the error_indicator_field used when creating STK fields. Default is
turbine_refinement_field.

write_percept_files
Boolean flag indicating whether input files for use with Percept is written out by this utility as part of the run.
Default: true.

percept_file_prefix
The prefix used for the Percept input file name. The default value is adapt. With the default file name and three
levels of refinement, it will create three input files: adapt1.yaml, adapt2.yaml, and adapt3.yaml.

3.5 init_channel_fields

This task initializes the velocity fields for channel flow simulations based on the parameters provided by the user and
writes it out to the output_db. It is safe to run init_channel_fields in parallel. A sample invocation is
shown below

1 init_channel_fields:
2 fluid_parts: [Unspecified-2-HEX]
3

4 velocity:
5 Re_tau : 550
6 viscosity : 0.0000157

fluid_parts
A list of element block names where the velocity fields are to be initialized.

velocity
A YAML dictionary containing two values: the friction Reynolds number, Re_tau, and the kinematic
viscosity (𝑚2/𝑠).

3.6 create_bdy_io_mesh

Create an I/O transfer mesh containing the boundaries of a given ABL precursor mesh. The I/O transfer mesh can be
used with Nalu during the precursor runs to dump inflow planes for use with a later wind farm LES simulation with
inflow/outflow boundaries. Unlike other utilities described in this section, this utility creates a new mesh instead of
adding to the database written out by the nalu_preprocess executable. It is safe to invoke this task in a parallel
MPI run.

output_db
Name of the I/O transfer mesh where the boundary planes are written out. This argument is mandatory.

24 Chapter 3. nalu_preprocess – Nalu Preprocessing Utilities

NaluWindUtils Documentation, Release v0.1.0

boundary_parts
A list of boundary parts that are saved in the I/O mesh. The names in the list must correspond to the names of
the sidesets in the given ABL mesh.

3.7 move_mesh

Translates a mesh in space by a given offset vector.

mesh_parts
List of element block names that must be translated

offset_vector
A 3-D vector that specifies the translation in space.

nalu_preprocess:
input_db: abl_1x1x1_10.exo
output_db: move_mesh.g

tasks:
- move_mesh

move_mesh:
mesh_parts:

- fluid

offset_vector: [10.0, 10.0, 0.0]

3.8 rotate_mesh

Rotates the mesh given angle, origin, and axis using quaternion rotations.

mesh_parts
A list of element block names that must be rotated.

angle
The rotation angle in degrees.

origin
An (x, y, z) coordinate for mesh rotation.

axis
A unit vector about which the mesh is rotated.

1 rotate_mesh:
2 mesh_parts:
3 - unspecified-2-hex
4

5 angle: 30.0
6 origin: [500.0, 0.0, 0.0]
7 axis: [0.0, 0.0, 1.0]

3.7. move_mesh 25

NaluWindUtils Documentation, Release v0.1.0

3.9 generate_planes

Deprecated since version Since: 2018-09-01

Generates horizontal planes of nodesets at given heights that are used for sampling velocity and temperature fields
during an ABL simulation. The resulting spatial average at given heights is used within Nalu to determine the driving
pressure gradient necessary to achieve the desired ABL profile during the simulation. This task is capable of running
in parallel.

The horizontal extent of the sampling plane can be either prescribed manually, or the program will use the bounding
box of the input mesh. Note that the latter approach only works if the mesh boundaries are oriented along the major
axes. The extent and orientation of the sampling plane is controlled using the boundary_type option in the input
file.

boundary_type
Flag indicating how the program should estimate the horizontal extents of the sampling plane when generating
nodesets. Currently, two options are supported:

Type Description
bounding_box Automatically estimate based on bounding box of the mesh
quad_vertices Use user-provided vertices

This flag is optional, and if it is not provided the program defaults to using the bounding_box approach to
estimate horizontal extents.

fluid_part
A list of element block names used to compute the extent using bounding box approach.

heights
A list of vertical heights where the nodesets are generated.

part_name_format
A printf style string that takes one floating point argument %f representing the height of the plane. For
example, if the user desires to generate nodesets at 70m and 90m respectively and desires to name the plane
zh_070 and zh_090 respectively, this can be achieved by setting part_name_format: zh_%03.0f.

dx, dy
Uniform resolutions in the x- and y-directions when generating nodesets. Used only when boundary_type
is set to bounding_box.

nx, ny
Number of subdivisions of along the two axes of the quadrilateral provided. Given 4 points, nx will divide
segments 1-2 and 3-4, and ny will divide segments 2-3 and 4-1. Used only when boundary_type is set
to quad_vertices.

vertices
Used to provide the horizontal extents of the sampling plane to the utility. For example

vertices:
- [250.0, 0.0] # Vertex 1 (S-W corner)
- [500.0, -250.0] # Vertex 2 (S-E corner)
- [750.0, 0.0] # Vertex 3 (N-E corner)
- [500.0, 250.0] # Vertex 4 (N-W corner)

26 Chapter 3. nalu_preprocess – Nalu Preprocessing Utilities

NaluWindUtils Documentation, Release v0.1.0

3.9.1 Example using custom vertices

1 generate_planes:
2 boundary_type: quad_vertices # Override default behavior
3 fluid_part: Unspecified-2-hex # Fluid part
4

5 heights: [70.0] # Heights were sampling planes are generated
6 part_name_format: "zplane_%06.1f" # Name format for new nodesets
7 nx: 25 # X resolution
8 ny: 25 # Y resolution
9 vertices: # Vertices of the quadrilateral

10 - [250.0, 0.0]
11 - [500.0, -250.0]
12 - [750.0, 0.0]
13 - [500.0, 250.0]

3.9. generate_planes 27

NaluWindUtils Documentation, Release v0.1.0

28 Chapter 3. nalu_preprocess – Nalu Preprocessing Utilities

CHAPTER

FOUR

NALU_POSTPROCESS – NALU POST-PROCESSING UTILITIES

This utility loads an Exodus-II solution file and performs various post-processing tasks on the database. Currently, the
following tasks have been implemented within this utility.

Task type Description
abl_statistics Calculate various ABL statistics of interest

The input file (download) must contain a nalu_postprocess section a shown below. Input options for various tasks
are provided as sub-sections within nalu_postprocess with the corresponding task names under tasks.

Example input file for Nalu Post-processing utility

nalu_postprocess:

Name of the solution results or restart database
input_db: rst/precursor.e

List of post-processing tasks to be performed
tasks:
- abl_statistics

Input parameters for the post-processing tasks
abl_statistics:
fluid_parts:
- Unspecified-2-HEX

field_map:
velocity: velocity_raone
temperature: temperature_raone
sfs_stress: sfs_stress_raone

height_info:
min_height: 0.0
max_height: 1000.0
delta_height: 10.0

4.1 Command line invocation

mpiexec -np <N> nalu_postprocess -i [YAML_INPUT_FILE]

-i, --input-file
Name of the YAML input file to be used. Default: nalu_postprocess.yaml.

29

NaluWindUtils Documentation, Release v0.1.0

4.2 Common input file options

input_db
Path to an existing Exodus-II mesh database file, e.g.., ablPrecursor.e

tasks
A list of task names that define the various pre-processing tasks that will be performed on the input mesh
database by this utility. The program expects to find additional sections with headings matching the task names
that provide additional inputs for individual tasks.

4.3 abl_statistics

This task computes various various statistics relevant for ABL simulations and outputs vertical profiles of various
quantities of interest.

Input parameters for the post-processing tasks
abl_statistics:
fluid_parts:
- Unspecified-2-HEX

field_map:
velocity: velocity_raone
temperature: temperature_raone
sfs_stress: sfs_stress_raone

height_info:
min_height: 0.0
max_height: 1000.0
delta_height: 10.0

30 Chapter 4. nalu_postprocess – Nalu Post-processing Utilities

CHAPTER

FIVE

WRFTONALU – WRF TO NALU CONVERTOR

This program converts WRF data to the Nalu (Exodus II) data format. Exodus II is part of SEACAS and one can find
other utilities to work with Exodus II files there. The objective is to provide Nalu with input WRF data as boundary
conditions (and, optionally, initial conditions).

This program was started as WRFTOOF, a WRF to OpenFoam converter, which was written by J. Michalakes and M.
Churchfield. It was adapted for converting to Nalu data by M. T. Henry de Frahan.

Note: This utility is not built by default. The user must set ENABLE_WRFTONALU to ON during the CMake configure
phase.

5.1 Command line invocation

bash$ wrftonalu [options] wrfout

where wrfout is the WRF data file used to generate inflow conditions for the Nalu simulations. The user must
provide the relevant boundary files in the run directory named west.g, east.g, south.g, north.g, lower.g,
and upper.g. Only the boundaries where inflow data is required need to exist. The interpolated WRF data is written
out to files with extension *.nc for the corresponding grid files for use with Nalu. The following optional parameters
can be supplied to customize the behavior of wrftonalu.

-startdate
Date string of the form YYYY-mm-dd_hh_mm_ss or YYYY-mm-dd_hh:mm:ss

-offset
Number of seconds to start Exodus directory naming (default: 0)

-coord_offset lat lon
Latitude and longitude of origin for Exodus mesh. Default: center of WRF data.

-ic
Populate initial conditions as well as boundary conditions.

-qwall
Generate temperature flux for the terrain (lower) BC file.

31

https://github.com/NaluCFD/Nalu
https://gsjaardema.github.io/seacas

NaluWindUtils Documentation, Release v0.1.0

32 Chapter 5. wrftonalu – WRF to Nalu Convertor

CHAPTER

SIX

ABL_MESH – BLOCK HEX MESH GENERATION

The abl_mesh executable can be used to generate structured mesh with HEX-8 elements in Exodus-II format. It can
generate meshes from scratch or convert from other formats to Exodus-II format.

6.1 Command line invocation

bash$ abl_mesh -i abl_mesh.yaml

Nalu ABL Mesh Generation Utility
Input file: abl_mesh.yaml
HexBlockMesh: Registering parts to meta data

Mesh block: fluid_part
Num. nodes = 1331; Num elements = 1000

Generating node IDs...
Creating nodes... 10% 20% 30% 40% 50% 60% 70% 80% 90%
Generating element IDs...
Creating elements... 10% 20% 30% 40% 50% 60% 70% 80% 90%
Finalizing bulk modifications...
Generating X Sideset: west
Generating X Sideset: east
Generating Y Sideset: south
Generating Y Sideset: north
Generating Z Sideset: terrain
Generating Z Sideset: top
Generating coordinates...

Writing mesh to file: ablmesh.exo

-i, --input-file
YAML input file to be processed for mesh generation details. Default: nalu_abl_mesh.yaml.

6.2 Common Input File Parameters

The input file must contain a nalu_abl_mesh section that contains the input parameters.

mesh_type
This variable can take the following options:

• generate_ablmesh - Will generate a structured HEX mesh, and is the default for mesh_type if not
present in the input file. See Structured Mesh Generation for more details.

• convert_plot3d - Converts a Plot3D binary file to Exodus-II format for use with Nalu. See Converting
Plot3D to Exodus-II for more details.

33

NaluWindUtils Documentation, Release v0.1.0

output_db [nalu_abl_mesh]
The Exodus-II filename where the mesh is output. No default, must be provided by the user.

fluid_part_name
Name of the element block created with HEX-8 elements. Default value: fluid_part.

ioss_8bit_ints
Boolean flag that enables output of 8-bit ints when writing Exodus mesh. Default value: false.

6.2.1 Boundary names

The user has the option to provide custom boundary names through the input file. Use the boundary name input
parameters to change the default parameters. If these are not provided the default boundary names are described
below:

Boundary Default sideset name
xmin_boundary_name west
xmax_boundary_name east
ymin_boundary_name south
ymax_boundary_name north
zmin_boundary_name terrain
zmax_boundary_name top

6.3 Structured Mesh Generation

The interface is similar to OpenFOAM’s blockMesh utility and can be used to generate simple meshes for ABL
simulations on flat terrain without resorting to commercial mesh generation software, e.g., Pointwise.

A sample input file is shown below

1 nalu_abl_mesh:
2 mesh_type: generate_ablmesh
3 output_db: ablmesh.exo
4

5 spec_type: bounding_box
6

7 vertices:
8 - [0.0, 0.0, 0.0]
9 - [10.0, 10.0, 10.0]

10

11 mesh_dimensions: [10, 10, 10]

spec_type
Specification type used to define the extents of the structured HEX mesh. This option is used to interpret the
vertices read from the input file. Currently, two options are supported:

Type Description
bounding_box Use axis aligned bounding box as domain boundaries
vertices Use user provided vertices to define extents

vertices
The coordinates specifying the extents of the computational domain. This entry is interpreted differently depend-
ing on the spec_type. If type is set to bounding_box then the code expects a list of two 3-D coordinate

34 Chapter 6. abl_mesh – Block HEX Mesh Generation

NaluWindUtils Documentation, Release v0.1.0

points describing bounding box to generate an axis aligned mesh. Otherwise, the code expects a list of 8 points
describing the vertices of the trapezoidal prism.

mesh_dimensions
Mesh resolution for the resulting structured HEX mesh along each direction. For a trapezoidal prism, the code
will interpret the major axis along 1-2, 1-4, and 1-5 edges respectively.

6.3.1 Mesh spacing

Users can specify the mesh spacing to be applied in each direction by adding additional sections (x_spacing,
y_spacing, and z_spacing respectively) to the input file. If no option is specified then a constant mesh spacing
is used in that direction.

Available options Implementation
constant_spacing ConstantSpacing
geometric_stretching GeometricStretching

Example input file

Specifiy constant spacing in x direction (this is the default)
x_spacing:
spacing_type: constant_spacing

y direction has a mesh stretching factor
y_spacing:
spacing_type: geometric_stretching
stretching_factor: 1.1

z direction has a mesh stretching factor in both directions
z_spacing:

spacing_type: geometric_stretching
stretching_factor: 1.1
bidirectional: true

6.4 Limitations

1. Does not support the ability to generate multiple blocks

2. Must be run on a single processor, running with multiple MPI ranks is currently unsupported.

6.5 Converting Plot3D to Exodus-II

An example input block is shown below:

nalu_abl_mesh:
mesh_type: convert_plot3d
plot3d_file: grid.p3d
output_db: p3d_grid.exo

plot3d_file
Path to the Plot3D grid file in binary format.

6.4. Limitations 35

NaluWindUtils Documentation, Release v0.1.0

36 Chapter 6. abl_mesh – Block HEX Mesh Generation

CHAPTER

SEVEN

SLICE_MESH – SAMPLING PLANE GENERATION

The slice_mesh executable can be used to generate sampling planes that can be used with I/O transfer interface of
Nalu-Wind for extract subsets of data from wind farm simulations.

7.1 Command line invocation

bash$ slice_mesh -i slice_mesh.yaml

Slice Mesh Generation Utility
Input file: slice_mesh.yaml
Loading slice inputs...
Initializing slices...
Slice: Registering parts to meta data:

- turbine1_1
- turbine1_2

Slice: Registering parts to meta data:
- turbine2_1
- turbine2_2

Generating slices for: turbine1
Creating nodes... 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Creating elements... 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Generating coordinate field
- turbine1_1
- turbine1_2

Generating slices for: turbine2
Creating nodes... 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Creating elements... 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Generating coordinate field
- turbine2_1
- turbine2_2

Writing mesh to file: sampling_planes.exo

Memory usage: Avg: 10.957 MB; Min: 10.957 MB; Max: 10.957 MB

-i, --input-file
YAML input file to be processed. Default: slice_mesh.yaml

37

NaluWindUtils Documentation, Release v0.1.0

38 Chapter 7. slice_mesh – Sampling plane generation

CHAPTER

EIGHT

BOXTURB – TURBULENCE BOX UTILITY

The boxturb executable is used to convert binary turbulence files into NetCDF format that can be read during Nalu-
Wind simulations. In addition to conversion, it allows the user to apply divergence correction and scaling the different
components through the input file.

8.1 Command line invocation

bash$ boxturb -i boxturb.yaml

Nalu Turbulent File Processing Utility
Input file: boxturb.yaml
Begin loading WindSim turbulence data

Loading file: sim1u.bin
Loading file: sim1v.bin
Loading file: sim1w.bin

Begin output in NetCDF format: turbulence.nc
NetCDF file written successfully: turbulence.nc

-i, --input-file
YAML inout file that contains inputs for the executable. Default: boxturb.yaml

8.2 Sample input file

1 boxturb:
2 data_format: windsim
3 output: turbulence.nc
4

5 box_dims: [1024, 128, 128]
6 box_len: [2400.0, 160.0, 160.0]
7

8 bin_filenames:
9 - sim1u.bin

10 - sim1v.bin
11 - sim1w.bin
12

13 correct_divergence: yes
14

15 solver_settings:
16 method: pfmg
17 preconditioner: none

(continues on next page)

39

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

18 max_iterations: 200
19 tolerance: 1.0e-8
20 print_level: 1
21 log_level: 1
22

23 # Scaling factor
24 apply_scaling: yes
25 scale_type: default
26 scaling_factors: [1.0, 0.7, 0.3]

40 Chapter 8. boxturb – Turbulence box utility

Part II

Developer Manual

41

CHAPTER

NINE

INTRODUCTION

This part of the documentation is intended for users who wish to extend or add new functionality to the NaluWindU-
tilities toolsuite. End users who want to use existing utilities should consult the User Manual for documentation on
standalone utilities.

9.1 Version Control System

Like Nalu, NaluWindUtils uses Git SCM to track all development activity. All development is coordinated through
the Github repository. Pro Git, a book that covers all aspects of Git is a good resource for users unfamiliar with Git
SCM. Github Desktop and Git Kraken are two options for users who prefer a GUI based interaction with Git source
code.

9.2 Building API Documentation

In-source comments can be compiled and viewed as HTML files using Doxygen. If you want to generate class
inheritance and other collaboration diagrams, then you will need to install Graphviz in addition to Doxygen.

1. API Documentation generation is disabled by default in CMake. Users will have to enable this by turning on
the ENABLE_DOXYGEN_DOCS flag.

2. Run make api-docs to generate the documentation in HTML form.

The resulting documentation will be available in doc/doxygen/html/ within the CMake build directory.

9.3 Contributing

The project welcomes contributions from the wind research community. Users can contribute to the source code
using the normal Github fork and pull request workflow. Please follow these general guidelines when submitting pull
requests to this project

• All C++ code must conform to the C++11 standard. Consult C++ Core Guidelines on best-practices to writing
idiomatic C++ code.

• Check and fix all compiler warnings before submitting pull requests. Use -Wall -Wextra -pedantic
options with GNU GCC or LLVM/Clang to check for warnings.

• New feature pull-requests must include doxygen-compatible in source documentation, additions to user man-
ual describing the enchancements and their usage, as well as the necessary updates to CMake files to enable
configuration and build of these capabilities.

43

http://nalu.readthedocs.io/en/latest/
https://www.git-scm.com
https://github.com/NaluCFD/NaluWindUtils
https://www.git-scm.com/book/en/v2
https://desktop.github.com
https://www.gitkraken.com
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.graphviz.org
https://guides.github.com/activities/forking/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

NaluWindUtils Documentation, Release v0.1.0

• Prefer Markdown format when documenting code using Doxgen-compatible comments.

• Avoid incurring additional third-party library (TPL) dependencies beyond what is required for building Nalu.
In cases where this is unavoidable, please discuss this with the development team by creating an issue on issues
page before submitting the pull request.

44 Chapter 9. Introduction

https://github.com/NaluCFD/NaluWindUtils/issues
https://github.com/NaluCFD/NaluWindUtils/issues

CHAPTER

TEN

NALU PRE-PROCESSING UTILITIES

NaluWindUtils provides several pre-processing utilities that are built as subclasses of PreProcessingTask.
These utilities are configured using a YAML input file and driven through the PreProcessDriver class – see
nalu_preprocess – Nalu Preprocessing Utilities for documentation on the available input file options. All pre-
processing utilities share a common interface and workflow through the PreProcessingTask API, and there
are three distinct phases for each utility namely: construction, initialization, and execution. The function of each of
the three phases as well as the various actions that can be performed during these phases are described below.

10.1 Task Construction Phase

The driver initializes each task through a constructor that takes two arguments:

• CFDMesh – a mesh instance that contains the MPI communicator, STK MetaData and BulkData instances as
well as other mesh related utilities.

• YAML::Node – a yaml-cpp node instance containing the user defined inputs for this particular task.

The driver class initializes the instances in the order that was specified in the YAML input file. However, the classes
must not assume existence or dependency on other task instances.

The base class PreProcessingTask already stores a reference to the CFDMesh instance in mesh_, that is acces-
sible to subclasses via protected access. It is the responsibility of the individual task instances to process the YAML
node during construction phase. Currently, this is typically done via the load(), a private method in the concrete
task specialization class.

No actions on STK MetaData or BulkData instances should be performed during the construction phase. The compu-
tational mesh may not be loaded at this point. The construction should only initialize the class member variables that
will be used in subsequent phases. The instance may store a reference to the YAML Node if necessary, but it is better
to process and validate YAML data during this phase and store them as class member variables of correct types.

It is recommended that all tasks created support execution in parallel and, if possible, handle both 2-D and 3-D meshes.
However, where this is not possible, the implementation much check for the necessary conditions via asserts and throw
errors appropriately.

10.2 Task Initialization Phase

Once all the task instances have been created and each instance has checked the validity of the user pro-
vided input files, the driver instance calls the initialize method on all the available task instances. All
stk::mesh::MetaData updates, e.g., part or field creation and registration, must be performed during this phase.
No stk::mesh::BulkData modifications should be performed during this stage. Some tips for proper initializa-
tion of parts and fields:

45

NaluWindUtils Documentation, Release v0.1.0

• Access to stk::mesh::MetaData and stk::mesh::BulkData is through meta() and bulk() re-
spectively. They return non-const references to the instances stored in the mesh object.

• Use MetaData::get_part() to check for the existence of a part in the mesh database,
MetaData::declare_part() will automatically create a part if none exists in the database.

• As with parts, use MetaData::declare_field() or MetaData::get_field() to create or perform
checks for existing fields as appropriate.

• New fields created by pre-processing tasks must be registered as an output field if it should be saved in the result
output ExodusII database. The default option is to not output all fields, this is to allow creation of temporary
fields that might not be necessary for subsequent Nalu simulations. Field registration for output is achieved by
calling add_output_field() from within the initialize() method.

// Register velocity and temperature fields for output
mesh_.add_output_field("velocity");
mesh_.add_output_field("temperature");

• The coordinates field is registered on the universal part, so it is not strictly necessary to register this field on
newly created parts.

Once all tasks have been initialized, the driver will commit the STK MetaData object and populate the BulkData
object. At this point, the mesh is fully loaded and BulkData modifications can begin and the driver moves to the
execution phase.

10.3 Task Execution Phase

The driver initiates execution phase of individual tasks by calling the run() method, which performs the core pre-
processing task of the instance. Since STK MetaData has been committed, no further MetaData modifications (i.e.,
part/field creation) can occur during this phase. All actions at this point are performed on the BulkData instance.
Typical examples include populating new fields, creating new entities (nodes, elements, sidesets), or moving mesh
by manipulating coordinates. If the mesh does not explicitly create any new fields, the task instance can still force a
write of the output database by calling the set_write_flag() to indicate that the database modifications must be
written out. By default, no output database is created if no actions were performed.

10.4 Task Destruction Phase

All task implementations must provide proper cleanup procedures via destructors. No explicit clean up task methods
are called by the driver utility. The preprocessing utility depends on C++ destructor actions to free resources etc.

10.5 Registering New Utility

The sierra::nalu::PreProcessingTask class uses a runtime selection mechanism to discover and ini-
tialize available utilities. To achieve this, new utilities must be registered by invoking a pre-defined macro
(REGISTER_DERIVED_CLASS) that wrap the logic necessary to register classes with the base class. For exam-
ple, to register a new utility MyNewUtility the developer must add the following line

REGISTER_DERIVED_CLASS(PreProcessingTask, MyNewUtility, "my_new_utility");

in the C++ implementation file (i.e., the .cpp file and not the .h header file). In the above example,
my_new_utility is the lookup type (see tasks) used by the driver when processing the YAML input file. Note
that this macro must be invoked from within the sierra::nalu namespace.

46 Chapter 10. Nalu Pre-processing Utilities

CHAPTER

ELEVEN

NALUWINDUTILS API DOCUMENTATION

11.1 Core Utilities

11.1.1 CFDMesh

class CFDMesh
STK Mesh interface.

This class provides a thin wrapper around the STK mesh objects (MetaData, BulkData, and StkMeshIoBroker)
for use with various preprocessing utilities.

Public Functions

CFDMesh(stk::ParallelMachine &comm, const std::string filename)
Create a CFD mesh instance from an existing mesh database.

Parameters

• comm: MPI Communicator object

• filename: Exodus database filename

CFDMesh(stk::ParallelMachine &comm, const int ndim)
Create a CFD mesh instance from scratch.

Parameters

• comm: MPI Communicator object

• ndim: Dimensionality of mesh

~CFDMesh()

void init(stk::io::DatabasePurpose db_purpose = stk::io::READ_MESH)
Initialize the mesh database.

If an input DB is provided, the mesh is read from the file. The MetaData is committed and the BulkData
is ready for use/manipulation.

stk::ParallelMachine &comm()
Reference to the MPI communicator object.

47

NaluWindUtils Documentation, Release v0.1.0

stk::mesh::MetaData &meta()
Reference to the stk::mesh::MetaData instance.

stk::mesh::BulkData &bulk()
Reference to the stk::mesh::BulkData instance.

stk::io::StkMeshIoBroker &stkio()
Reference to the STK mesh I/O instance.

void add_output_field(const std::string field)
Register a field for output during write.

Parameters

• field: Name of the field to be output

size_t open_database(std::string output_db)
Open a database for writing time series data.

Return A valid file handle for use with write_database

See write_database, write_timesteps

Parameters

• output_db: Pathname to the output ExodusII database

void write_database(size_t fh, double time)
Write time series data to an open database.

See open_database, write_timesteps

Parameters

• fh: Valid file handle

• time: Time to write

void write_database(std::string output_db, double time = 0.0)
Write the Exodus results database with modifications.

See write_database_with_fields

Parameters

• output_db: Pathname to the output ExodusII database

• time: Timestep to write

Parameters

• output_db: Filename for the output Exodus database

• time: (Optional) time to write (default = 0.0)

void write_database_with_fields(std::string output_db)
Write database with restart fields.

Copies the restart data fields from the input Exodus database to the output database.

Parameters

48 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

• output_db: Pathname to the output ExodusII database

template<typename Functor>
void write_timesteps(std::string output_db, int num_steps, Functor lambdaFunc)

Write time-history to database.

This method accepts a functor that takes one integer argument (timestep) and returns the time (double) that
must be written to the database. The functor should update the fields that are being written to the database.
An example would be to simulate mesh motion by updating the mesh_displacement field at every timestep.

The following example shows the use with a C++ lambda function:

double deltaT = 0.01; // Timestep size

write_timesteps("inflow_history.exo", 100,
[&](int tstep) {

double time = tstep * deltaT;

// Update velocity and coordinates

return time;
});

BoxType calc_bounding_box(const stk::mesh::Selector selector, bool verbose = true)
Calculate the bounding box of the mesh.

The selector can pick parts that are not contiguous. However, the bounding box returned will be the biggest
box that encloses all parts selected.

Return An stk::search::Box instance containing the min and max points (3-D).

Parameters

• selector: An instance of stk::mesh::Selector to filter parts of the mesh where bounding box is
calculated.

• verbose: If true, then print out the bounding box to standard output.

void set_decomposition_type(std::string decompType)
Set automatic mesh decomposition property.

Valid decomposition types are: rcb, rib, block, linear

Parameters

• decompType: The decomposition type

void set_64bit_flags()
Force output database to use 8-bit integers.

bool db_modified()
Flag indicating whether the DB has been modified.

void set_write_flag(bool flag = true)
Force output of the results DB.

const std::unordered_set<std::string> &output_fields()
Return a reference to the registered output fields.

11.1. Core Utilities 49

NaluWindUtils Documentation, Release v0.1.0

11.1.2 Interpolation utilities

struct OutOfBounds
Flags and actions for out-of-bounds operation.

Public Types

enum boundLimits
Out of bounds limit types.

Values:

LOWLIM = -2
xtgt < xarray[0]

UPLIM = -1
xtgt > xarray[N]

VALID = 0
xarray[0] <= xtgt <= xarray[N]

enum OobAction
Flags indicating action to perform on Out of Bounds situation.

Values:

ERROR = 0
Raise runtime error.

WARN
Warn and then CLAMP.

CLAMP
Clamp values to the end points.

EXTRAPOLATE
Extrapolate linearly based on end point.

template<typename T>
InterpTraits<T>::index_type sierra::nalu::utils::check_bounds(const Array1D<T> &xinp,

const T &x)
Determine whether the given value is within the limits of the interpolation table.

Return A std::pair containing the OutOfBounds flag and the index (0 or MAX)

Parameters

• xinp: 1-D array of monotonically increasing values

• x: The value to check for

template<typename T>
InterpTraits<T>::index_type sierra::nalu::utils::find_index(const Array1D<T> &xinp,

const T &x)
Return an index object corresponding to the x-value based on interpolation table.

Return The std::pair returned contains two values: the bounds indicator and the index of the element in
the interpolation table such that xarray[i] <= x < xarray[i+1]

Parameters

• xinp: 1-D array of monotonically increasing values

50 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

• x: The value to check for

template<typename T>
void sierra::nalu::utils::linear_interp(const Array1D<T> &xinp, const Array1D<T>

&yinp, const T &xout, T &yout, OutOf-
Bounds::OobAction oob = OutOfBounds::CLAMP)

Perform a 1-D linear interpolation.

Parameters

• xinp: A 1-d vector of monotonically increasing x-values

• yinp: Corresponding 1-d vector of y-values

• xout: Target x-value for interpolation

• yout: Interpolated value at xout

• oob: (Optional) Out-of-bounds handling (default: CLAMP)

11.1.3 YAML utilities

Miscellaneous utilities for working with YAML C++ library.

namespace sierra

namespace nalu

namespace wind_utils

Functions

template<typename T>
bool get_optional(const YAML::Node &node, const std::string &key, T &result)

Fetch an optional entry from the YAML dictionary if it exists.

The result parameter is unchanged if the entry is not found in the YAML dictionary.

Parameters
• node: The YAML::Node instance to be examined
• key: The name of the variable to be extracted
• result: The variable that is updated with the value if it exists

template<typename T>
bool get_optional(const YAML::Node &node, const std::string &key, T &result,

const T &default_value)
Fetch an optional entry from the YAML dictionary if it exists.

The result parameter is updated with the value from the dictionary if it exists, otherwise it is
initialized with the default value provided.

Parameters
• node: The YAML::Node instance to be examined
• key: The name of the variable to be extracted
• result: The variable that is updated with the value if it exists

11.1. Core Utilities 51

NaluWindUtils Documentation, Release v0.1.0

• default_value: The default value to be used if the parameter is not found in the dictio-
nary.

11.1.4 Performance Monitoring Utilities

namespace sierra

namespace nalu

Functions

Teuchos::RCP<Teuchos::Time> get_timer(const std::string &name)
Return a timer identified by name.

If an existing timer is found, then the timer is returned. Otherwise a new timer is created. The
user will have to manually start/stop the timer. For most use cases, it might be preferable to use
get_stopwatch function instead.

Teuchos::TimeMonitor get_stopwatch(const std::string &name)
Return a stopwatch identified by name.

The clock starts automatically upon invocation and will be stopped once the
Teuchos::Timemonitor instance returned by this function goes out of scope.

11.2 Pre-processing Utilities

11.2.1 PreProcessDriver

class PreProcessDriver
A driver that runs all preprocessor tasks.

This class is responsible for reading the input file, parsing the user-requested list of tasks, initializing the task
instances, executing them, and finally writing out the updated Exodus database with changed inputs.

Public Functions

PreProcessDriver(stk::ParallelMachine &comm, const std::string filename)

Parameters

• comm: MPI Communicator reference

• filename: Name of the YAML input file

void run()
Run all tasks and output the updated Exodus database.

52 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

11.2.2 PreProcessingTask

class PreProcessingTask
An abstract implementation of a PreProcessingTask.

This class defines the interface for a pre-processing task and contains the infrastructure to allow concrete im-
plementations of pre-processing tasks to register themselves for automatic runtime discovery. Derived classes
must implement two methods:

• initialize - Perform actions on STK MetaData before processing BulkData

• run - All actions on BulkData and other operations on mesh after it has been loaded from the disk.

For automatic class registration, the derived classes must implement a constructor that takes two arguments: a
CFDMesh reference, and a const reference to YAML::Node that contains the inputs necessary for the concrete
task implementation. It is the derived class’ responsibility to process the input dictionary and perform error
checking. No STK mesh manipulations must occur in the constructor.

Subclassed by sierra::nalu::ABLFields, sierra::nalu::BdyIOPlanes, sierra::nalu::ChannelFields,
sierra::nalu::HITFields, sierra::nalu::InflowHistory, sierra::nalu::NDTW2D, sierra::nalu::NestedRefinement,
sierra::nalu::RotateMesh, sierra::nalu::SamplingPlanes, sierra::nalu::TranslateMesh

Public Functions

PreProcessingTask(CFDMesh &mesh)

Parameters

• mesh: A sierra::nalu::CFDMesh instance

virtual void initialize() = 0
Initialize the STK MetaData instance.

This method handles the registration and creation of new parts and fields. All subclasses must implement
this method.

virtual void run() = 0
Process the STK BulkData instance.

This method handles the creating of new entities, manipulating coordinates, and populating fields.

Public Static Functions

PreProcessingTask *create(CFDMesh &mesh, const YAML::Node &node, std::string lookup)
Runtime creation of concrete task instance.

Protected Attributes

CFDMesh &mesh_
Reference to the CFDMesh instance.

11.2. Pre-processing Utilities 53

NaluWindUtils Documentation, Release v0.1.0

11.2.3 ABLFields

class ABLFields : public sierra::nalu::PreProcessingTask
Initialize velocity and temperature fields for ABL simulations.

This task is activated by using the init_abl_fields task in the preprocessing input file. It requires a section
init_abl_fields in the nalu_preprocess section with the following parameters:

init_abl_fields:
fluid_parts: [Unspecified-2-HEX]

temperature:
heights: [0, 650.0, 750.0, 10750.0]
values: [280.0, 280.0, 288.0, 318.0]

velocity:
heights: [0.0, 10.0, 30.0, 70.0, 100.0, 650.0, 10000.0]
values:

- [0.0, 0.0, 0.0]
- [4.81947, -4.81947, 0.0]
- [5.63845, -5.63845, 0.0]
- [6.36396, -6.36396, 0.0]
- [6.69663, -6.69663, 0.0]
- [8.74957, -8.74957, 0.0]
- [8.74957, -8.74957, 0.0]

The sections temperature and velocity are optional, allowing the user to initialize only the temperature
or the velocity as desired. The heights are in meters, the temperature is the potential temperature in Kelvin, and
the velocity is the actual vector in m/s. Currently, the code does not include the ability to automatically convert
(mangitude, direction) to velocity vectors.

Public Functions

ABLFields(CFDMesh &mesh, const YAML::Node &node)

Parameters

• mesh: A sierra::nalu::CFDMesh instance

• node: The YAML::Node containing inputs for this task

void initialize()
Declare velocity and temperature fields and register them for output.

void run()
Initialize the velocity and/or temperature fields by linear interpolation.

Private Functions

void load(const YAML::Node &abl)
Parse the YAML file and initialize parameters.

void load_velocity_info(const YAML::Node &abl)
Helper function to parse and initialize velocity inputs.

void load_temperature_info(const YAML::Node &abl)
Helper function to parse and initialize temperature inputs.

54 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

void init_velocity_field()
Initialize the velocity field through linear interpolation.

void init_temperature_field()
Intialize the temperature field through linear interpolation.

void perturb_velocity_field()
Add perturbations to velocity field.

void perturb_temperature_field()
Add perturbations to temperature field.

Private Members

stk::mesh::MetaData &meta_
STK Metadata object.

stk::mesh::BulkData &bulk_
STK Bulkdata object.

stk::mesh::PartVector fluid_parts_
Parts of the fluid mesh where velocity/temperature is initialized.

std::vector<double> vHeights_
List of heights where velocity is defined.

Array2D<double> velocity_
List of velocity (3-d components) at the user-defined heights.

std::vector<double> THeights_
List of heights where temperature is defined.

std::vector<double> TValues_
List of temperatures (K) at user-defined heights (THeights_)

std::vector<std::string> periodicParts_
List of periodic parts.

double deltaU_ = {1.0}
Velocity perturbation amplitude for Ux.

double deltaV_ = {1.0}
Velocity perturbation amplitude for Uy.

double Uperiods_ = {4.0}
Number of periods for Ux.

double Vperiods_ = {4.0}
Number of periods for Uy.

double zRefHeight_ = {50.0}
Reference height for velocity perturbations.

double thetaAmplitude_
Amplitude of temperature perturbations.

double thetaGaussMean_ = {0.0}
Mean for the Gaussian random number generator.

double thetaGaussVar_ = {1.0}
Variance of the Gaussian random number generator.

11.2. Pre-processing Utilities 55

NaluWindUtils Documentation, Release v0.1.0

double thetaCutoffHt_
Cutoff height for temperature fluctuations.

int ndim_
Dimensionality of the mesh.

bool doVelocity_
Flag indicating whether velocity is initialized.

bool doTemperature_
Flag indicating whether temperature is initialized.

bool perturbU_ = {false}
Flag indicating whether velocity perturbations are added during initialization.

bool perturbT_ = {false}
Flag indicating whether temperature perturbations are added.

11.2.4 BdyIOPlanes

class BdyIOPlanes : public sierra::nalu::PreProcessingTask
Extract boundary planes for I/O mesh.

Given an ABL precursor mesh, this utility extracts the specified boundaries and creates a new IO Transfer mesh
for use with ABL precursor simulations.

Public Functions

BdyIOPlanes(CFDMesh &mesh, const YAML::Node &node)

Parameters

• mesh: A sierra::nalu::CFDMesh instance

• node: The YAML::Node containing inputs for this task

void initialize()
Register boundary parts and attach coordinates to the parts.

The parts are created as SHELL elements to as needed by the Nalu Transfer class.

void run()
Copy user specified boundaries and save the IO Transfer mesh.

Private Functions

void load(const YAML::Node &node)
Parse user inputs from the YAML file.

void create_boundary(const std::string bdyName)
Copy the boundary from Fluid mesh to the IO Xfer mesh.

56 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

Private Members

CFDMesh &mesh_
Original mesh DB information.

CFDMesh iomesh_
IO Mesh db STK meta and bulk data.

std::vector<std::string> bdyNames_
User specified list of boundaries to be extracted.

std::string output_db_ = {""}
Name of the I/O db where the boundaries are written out.

11.2.5 SamplingPlanes

class SamplingPlanes : public sierra::nalu::PreProcessingTask
Generate 2-D grids/planes for data sampling.

Currently only generates horizontal planes at user-defined heights.

Requires a section generate_planes in the input file within the nalu_preprocess section:

generate_planes:
fluid_part: Unspecified-2-hex

heights: [70.0]
part_name_format: "zplane_%06.1f"

dx: 12.0
dy: 12.0

With the above input definition, it will use the bounding box of the fluid_part to determine the bounding
box of the plane to be generated. This will provide coordinate axis aligned sapling planes in x and y directions.
Alternately, the user can specify boundary_type to be quad_vertices and provide the vertices of the
quadrilateral that is used to generate the sampling plane as shown below:

generate_planes:
boundary_type: quad_vertices
fluid_part: Unspecified-2-hex

heights: [50.0, 70.0, 90.0]
part_name_format: "zplane_%06.1f"

nx: 25 # Number of divisions along (1-2) and (4-3) vertices
ny: 25 # Number of divisions along (1-4) and (2-3) vertices
vertices:

- [250.0, 0.0]
- [500.0, -250.0]
- [750.0, 0.0]
- [500.0, 250.0]

part_name_format is a printf-like format specification that takes one argument - the height as a floating
point number. The user can use this to tailor how the nodesets or the shell parts are named in the output Exodus
file.

11.2. Pre-processing Utilities 57

NaluWindUtils Documentation, Release v0.1.0

Public Types

enum PlaneBoundaryType
Sampling Plane boundary type.

Values:

BOUND_BOX = 0
Use bounding box of the fluid mesh defined.

QUAD_VERTICES
Use user-defined vertex list for plane boundary.

Public Functions

void initialize()
Initialize the STK MetaData instance.

This method handles the registration and creation of new parts and fields. All subclasses must implement
this method.

void run()
Process the STK BulkData instance.

This method handles the creating of new entities, manipulating coordinates, and populating fields.

Private Functions

void calc_bounding_box()
Use fluid Realm mesh to estimate the x-y bounding box for the sampling planes.

void generate_zplane(const double zh)
Generate entities and update coordinates for a given sampling plane.

Private Members

stk::mesh::MetaData &meta_
STK Metadata object.

stk::mesh::BulkData &bulk_
STK Bulkdata object.

std::vector<double> heights_
Heights where the averaging planes are generated.

std::array<std::array<double, 3>, 2> bBox_
Bounding box of the original mesh.

std::string name_format_
Format specification for the part name.

std::vector<std::string> fluidPartNames_
Fluid realm parts (to determine mesh bounding box)

stk::mesh::PartVector fluidParts_
Parts of the fluid mesh (to determine mesh bounding box)

58 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

double dx_
Spatial resolution in x and y directions.

double dy_
Spatial resolution in x and y directions.

size_t nx_
Number of nodes in x and y directions.

size_t mx_
Number of elements in x and y directions.

int ndim_
Dimensionality of the mesh.

PlaneBoundaryType bdyType_ = {BOUND_BOX}
User defined selection of plane boundary type.

11.2.6 NestedRefinement

class NestedRefinement : public sierra::nalu::PreProcessingTask
Tag regions in mesh for refinement with Percept mesh_adapt utility.

This utility creates a field turbine_refinement_field that is populated with an indicator value between [0, 1] that
can be used with the Percept mesh_adapt utility to locally refine regions of interest.

A typical use of this utility is to refine an ABL mesh around turbines, especially for use with actuator line wind
farm simulations.

Public Functions

void initialize()
Initialize the refinement field and register to parts.

void run()
Perform search and tag elements with appropriate values for subsequent refinement.

Private Functions

void load(const YAML::Node &node)
Parse the YAML file and initialize the necessary parameters.

void process_inputs()
Process input data and populate necessary data structures for subsequent use.

double compute_refine_fraction(Vec3D &point)
Estimate the refinement fraction [0,1] for a given element, indicated by the element mid point.

void write_percept_inputs()
Write out the input files that can be used with Percept.

11.2. Pre-processing Utilities 59

NaluWindUtils Documentation, Release v0.1.0

Private Members

std::vector<std::string> fluidPartNames_
Partnames for the ABL mesh.

stk::mesh::PartVector fluidParts_
Parts of the ABL mesh where refinement is performed.

std::vector<double> turbineDia_
List of turbine diameters for the turbines in the wind farm [numTurbines].

std::vector<double> turbineHt_
List of turbine tower heights for the turbines in wind farm [numTurbines].

std::vector<Vec3D> turbineLocs_
List of turbine pad locations [numTurbines, 3].

std::vector<std::vector<double>> refineLevels_
List of refinement levels [numLevels, 3].

std::vector<TrMat> boxAxes_
Transformation matrices for each turbine [numTurbines].

std::vector<Vec3D> corners_
The minimum corners for each refinement box [numTurbines * numLevels].

std::vector<Vec3D> boxLengths_
The dimensions of each box [numTurbines * numLevels].

std::string refineFieldName_ = {"turbine_refinement_field"}
Field name used in the Exodus mesh for the error indicator field.

std::string perceptFilePrefix_ = {"adapt"}
Prefix for the input file name.

double searchTol_ = {10.0}
Search tolerance used when searching for box inclusion.

double windAngle_ = {270.0}
Compass direction of the wind (in degrees)

size_t numTurbines_
The number of turbines in the wind farm.

size_t numLevels_
The number of refinement levels.

bool writePercept_ = {true}
Write input files for use with subsequent percept run.

11.2.7 ChannelFields

class ChannelFields : public sierra::nalu::PreProcessingTask
Initialize velocity fields for channel flow simulations.

This task is activated by using the init_channel_fields task in the preprocessing input file. It requires a
section init_channel_fields in the nalu_preprocess section with the following parameters:

init_channel_fields:
fluid_parts: [Unspecified-2-HEX]

(continues on next page)

60 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

(continued from previous page)

velocity:
Re_tau : 550
viscosity : 0.0000157

The user specified the friction Reynolds number, Re_tau, and the kinematic viscosity (in m^2/s). The
velocity field is initialized to a Reichardt function, with an imposed sinusoidal perturbation and random pertur-
bation in the wall parallel directions.

Public Functions

void initialize()
Declare velocity fields and register them for output.

void run()
Initialize the velocity fields by linear interpolation.

11.2.8 RotateMesh

class RotateMesh : public sierra::nalu::PreProcessingTask
Rotate a mesh.

rotate_mesh:
mesh_parts:

- unspecified-2-hex

angle: 45.0
origin: [500.0, 0.0, 0.0]
axis: [0.0, 0.0, 1.0]

Public Functions

void initialize()
Initialize the STK MetaData instance.

This method handles the registration and creation of new parts and fields. All subclasses must implement
this method.

void run()
Process the STK BulkData instance.

This method handles the creating of new entities, manipulating coordinates, and populating fields.

Private Members

stk::mesh::MetaData &meta_
STK Metadata object.

stk::mesh::BulkData &bulk_
STK Bulkdata object.

std::vector<std::string> meshPartNames_
Part names of the mesh that needs to be rotated.

11.2. Pre-processing Utilities 61

NaluWindUtils Documentation, Release v0.1.0

stk::mesh::PartVector meshParts_
Parts of the mesh that need to be rotated.

double angle_
Angle of rotation.

std::vector<double> origin_
Point about which rotation is performed.

std::vector<double> axis_
Axis around which the rotation is performed.

int ndim_
Dimensionality of the mesh.

11.2.9 NDTW2D

class NDTW2D : public sierra::nalu::PreProcessingTask
2-D Nearest distance to wall calculator

Calculates a new field NDTW containing the wall distance for 2-D airfoil-like applications used in RANS wall
models.

Public Functions

void initialize()
Initialize the NDTW field and register for output.

void run()
Calculate wall distance and update NDTW field.

11.3 Meshing Utilities

11.3.1 Mesh Generation and Conversion

class HexBlockBase
Base class representation of a structured hex mesh.

Subclassed by sierra::nalu::HexBlockMesh, sierra::nalu::Plot3DMesh

Public Types

enum SideIDType
Sideset definition type.

Values:

XMIN = 0

YMIN

ZMIN

XMAX

YMAX

62 Chapter 11. NaluWindUtils API Documentation

NaluWindUtils Documentation, Release v0.1.0

ZMAX

Public Functions

void initialize()
Registers the element block and the sidesets to the STK MetaData instance.

void run()
Creates the nodes and elements within the mesh block, processes sidesets, and initializes the coordinates
of the mesh structure.

Public Static Functions

HexBlockBase *create(CFDMesh &mesh, const YAML::Node &node, std::string lookup)
Runtime creation of mesh generator instance.

class HexBlockMesh : public sierra::nalu::HexBlockBase
Create a structured block mesh with HEX-8 elements.

Public Types

enum DomainExtentsType
Computational domain definition type.

Values:

BOUND_BOX = 0
Use bounding box to define mesh extents.

VERTICES
Provide vertices for the cuboidal domain.

Public Functions

HexBlockMesh(CFDMesh &mesh, const YAML::Node &node)

Parameters

• mesh: A sierra::nalu::CFDMesh instance

• node: The YAML::Node containing inputs for this task

class Plot3DMesh : public sierra::nalu::HexBlockBase

Mesh Spacing Options

class MeshSpacing
Abstract base class that defines the notion of mesh spacing.

This class provides an interface where mesh spacing for a structured mesh can be represented as a 1-D array of
values (0.0 <= ratio[i] <= 1.0) in a particular direction, that represents the location of the i-th node
on the mesh on a unit cube.

See sierra::nalu::HexBlockMesh

11.3. Meshing Utilities 63

NaluWindUtils Documentation, Release v0.1.0

Subclassed by sierra::nalu::ConstantSpacing, sierra::nalu::GeometricStretching

Public Functions

virtual void init_spacings() = 0
Initialize spacings based on user inputs.

const std::vector<double> &ratios() const
A 1-D array of fractions that represents the distance from the origin for a unit cube.

Public Static Functions

MeshSpacing *create(int npts, const YAML::Node &node, std::string lookup)
Runtime creation of the concrete spacing instance.

class ConstantSpacing : public sierra::nalu::MeshSpacing
Constant mesh spacing distribution.

Specialization of MeshSpacing to allow for constant mesh spacing which is the default implementation if no
user option is specified in the input file. This class requires no additional input arguments in the YAML file.

Public Functions

void init_spacings()
Initialize a constant spacing 1-D mesh.

class GeometricStretching : public sierra::nalu::MeshSpacing
Create a mesh spacing distribution with a constant stretching factor.

Requires user to specify a constant stretching factor that is used, along with the number of elements, to determine
the first cell height and the resulting spacing distribution on a one-dimensional mesh of unit length. Given a
stretching factor 𝑠, the first cell height is calculated as

ℎ0 = 𝐿

(︂
𝑠− 1

𝑠𝑛 − 1

)︂

By default, the stretching factor is applied in one direction. The user can set the bidirectional flag to true
to apply the stretching factors and spacings at both ends.

Public Functions

void init_spacings()
Initialize spacings based on user inputs.

64 Chapter 11. NaluWindUtils API Documentation

Part III

Indices and Tables

65

NaluWindUtils Documentation, Release v0.1.0

• genindex

67

NaluWindUtils Documentation, Release v0.1.0

68

INDEX

Symbols
-coord_offset lat lon

wrftonalu command line option, 31
-i, -input-file

abl_mesh command line option, 33
boxturb command line option, 39
nalu_postprocess command line

option, 29
nalu_preprocess command line

option, 20
slice_mesh command line option, 37

-ic
wrftonalu command line option, 31

-offset
wrftonalu command line option, 31

-qwall
wrftonalu command line option, 31

-startdate
wrftonalu command line option, 31

A
abl_mesh command line option

-i, -input-file, 33
angle

input file parameter, 25
automatic_decomposition_type

input file parameter, 20
axis

input file parameter, 25

B
boundary_parts

input file parameter, 24
boundary_type

input file parameter, 26
boxturb command line option

-i, -input-file, 39

C
CMake configuration

CMAKE_BUILD_TYPE, 7
CMAKE_C_COMPILER, 8

CMAKE_C_FLAGS, 8
CMAKE_CXX_COMPILER, 8
CMAKE_CXX_FLAGS, 8
CMAKE_Fortran_COMPILER, 8
CMAKE_Fortran_FLAGS, 9
CMAKE_INSTALL_PREFIX, 7
CMAKE_VERBOSE_MAKEFILE, 8
ENABLE_DOXYGEN_DOCS, 8
ENABLE_SPHINX_API_DOCS, 8
ENABLE_SPHINX_DOCS, 8
ENABLE_WRFTONALU, 8
NETCDF_DIR, 8
NETCDF_F77_ROOT, 8
Trilinos_DIR, 8
YAML_ROOT, 8

CMAKE_BUILD_TYPE
CMake configuration, 7

CMAKE_C_COMPILER
CMake configuration, 8

CMAKE_C_FLAGS
CMake configuration, 8

CMAKE_CXX_COMPILER
CMake configuration, 8

CMAKE_CXX_FLAGS
CMake configuration, 8

CMAKE_Fortran_COMPILER
CMake configuration, 8

CMAKE_Fortran_FLAGS
CMake configuration, 9

CMAKE_INSTALL_PREFIX
CMake configuration, 7

CMAKE_VERBOSE_MAKEFILE
CMake configuration, 8

D
dx,dy

input file parameter, 26

E
ENABLE_DOXYGEN_DOCS

CMake configuration, 8
ENABLE_SPHINX_API_DOCS

69

NaluWindUtils Documentation, Release v0.1.0

CMake configuration, 8
ENABLE_SPHINX_DOCS

CMake configuration, 8
ENABLE_WRFTONALU

CMake configuration, 8
environment variable

PATH, 9

F
fluid_part

input file parameter, 26
fluid_part_name

input file parameter, 34
fluid_parts

input file parameter, 22, 24

H
heights

input file parameter, 26

I
input file parameter

angle, 25
automatic_decomposition_type, 20
axis, 25
boundary_parts, 24
boundary_type, 26
dx,dy, 26
fluid_part, 26
fluid_part_name, 34
fluid_parts, 22, 24
heights, 26
input_db, 20, 30
ioss_8bit_ints, 21, 34
mesh_dimensions, 35
mesh_parts, 25
mesh_type, 33
nx,ny, 26
offset_vector, 25
orientation, 23
origin, 25
output_db, 20, 24
output_db[nalu_abl_mesh], 33
part_name_format, 26
percept_file_prefix, 24
plot3d_file, 35
refine_field_name, 24
refinement_levels, 24
search_tolerance, 24
spec_type, 34
tasks, 20, 30
temperature, 22
transfer_fields, 21
turbine_diameters, 23

turbine_heights, 23
turbine_locations, 23
velocity, 22, 24
vertices, 26, 34
write_percept_files, 24

input_db
input file parameter, 20, 30

ioss_8bit_ints
input file parameter, 21, 34

M
mesh_dimensions

input file parameter, 35
mesh_parts

input file parameter, 25
mesh_type

input file parameter, 33

N
nalu_postprocess command line option

-i, -input-file, 29
nalu_preprocess command line option

-i, -input-file, 20
NETCDF_DIR

CMake configuration, 8
NETCDF_F77_ROOT

CMake configuration, 8
nx,ny

input file parameter, 26

O
offset_vector

input file parameter, 25
orientation

input file parameter, 23
origin

input file parameter, 25
output_db

input file parameter, 20, 24
output_db[nalu_abl_mesh]

input file parameter, 33

P
part_name_format

input file parameter, 26
PATH, 9
percept_file_prefix

input file parameter, 24
plot3d_file

input file parameter, 35

R
refine_field_name

input file parameter, 24

70 Index

NaluWindUtils Documentation, Release v0.1.0

refinement_levels
input file parameter, 24

S
search_tolerance

input file parameter, 24
sierra::nalu::ABLFields (C++ class), 54
sierra::nalu::ABLFields::ABLFields (C++

function), 54
sierra::nalu::ABLFields::bulk_ (C++ mem-

ber), 55
sierra::nalu::ABLFields::deltaU_ (C++

member), 55
sierra::nalu::ABLFields::deltaV_ (C++

member), 55
sierra::nalu::ABLFields::doTemperature_

(C++ member), 56
sierra::nalu::ABLFields::doVelocity_

(C++ member), 56
sierra::nalu::ABLFields::fluid_parts_

(C++ member), 55
sierra::nalu::ABLFields::init_temperature_field

(C++ function), 55
sierra::nalu::ABLFields::init_velocity_field

(C++ function), 55
sierra::nalu::ABLFields::initialize

(C++ function), 54
sierra::nalu::ABLFields::load (C++ func-

tion), 54
sierra::nalu::ABLFields::load_temperature_info

(C++ function), 54
sierra::nalu::ABLFields::load_velocity_info

(C++ function), 54
sierra::nalu::ABLFields::meta_ (C++ mem-

ber), 55
sierra::nalu::ABLFields::ndim_ (C++ mem-

ber), 56
sierra::nalu::ABLFields::periodicParts_

(C++ member), 55
sierra::nalu::ABLFields::perturb_temperature_field

(C++ function), 55
sierra::nalu::ABLFields::perturb_velocity_field

(C++ function), 55
sierra::nalu::ABLFields::perturbT_ (C++

member), 56
sierra::nalu::ABLFields::perturbU_ (C++

member), 56
sierra::nalu::ABLFields::run (C++ func-

tion), 54
sierra::nalu::ABLFields::THeights_ (C++

member), 55
sierra::nalu::ABLFields::thetaAmplitude_

(C++ member), 55

sierra::nalu::ABLFields::thetaCutoffHt_
(C++ member), 55

sierra::nalu::ABLFields::thetaGaussMean_
(C++ member), 55

sierra::nalu::ABLFields::thetaGaussVar_
(C++ member), 55

sierra::nalu::ABLFields::TValues_ (C++
member), 55

sierra::nalu::ABLFields::Uperiods_ (C++
member), 55

sierra::nalu::ABLFields::velocity_ (C++
member), 55

sierra::nalu::ABLFields::vHeights_ (C++
member), 55

sierra::nalu::ABLFields::Vperiods_ (C++
member), 55

sierra::nalu::ABLFields::zRefHeight_
(C++ member), 55

sierra::nalu::BdyIOPlanes (C++ class), 56
sierra::nalu::BdyIOPlanes::BdyIOPlanes

(C++ function), 56
sierra::nalu::BdyIOPlanes::bdyNames_

(C++ member), 57
sierra::nalu::BdyIOPlanes::create_boundary

(C++ function), 56
sierra::nalu::BdyIOPlanes::initialize

(C++ function), 56
sierra::nalu::BdyIOPlanes::iomesh_ (C++

member), 57
sierra::nalu::BdyIOPlanes::load (C++

function), 56
sierra::nalu::BdyIOPlanes::mesh_ (C++

member), 57
sierra::nalu::BdyIOPlanes::output_db_

(C++ member), 57
sierra::nalu::BdyIOPlanes::run (C++ func-

tion), 56
sierra::nalu::CFDMesh (C++ class), 47
sierra::nalu::CFDMesh::~CFDMesh (C++

function), 47
sierra::nalu::CFDMesh::add_output_field

(C++ function), 48
sierra::nalu::CFDMesh::bulk (C++ function),

48
sierra::nalu::CFDMesh::calc_bounding_box

(C++ function), 49
sierra::nalu::CFDMesh::CFDMesh (C++ func-

tion), 47
sierra::nalu::CFDMesh::comm (C++ function),

47
sierra::nalu::CFDMesh::db_modified (C++

function), 49
sierra::nalu::CFDMesh::init (C++ function),

47

Index 71

NaluWindUtils Documentation, Release v0.1.0

sierra::nalu::CFDMesh::meta (C++ function),
47

sierra::nalu::CFDMesh::open_database
(C++ function), 48

sierra::nalu::CFDMesh::output_fields
(C++ function), 49

sierra::nalu::CFDMesh::set_64bit_flags
(C++ function), 49

sierra::nalu::CFDMesh::set_decomposition_type
(C++ function), 49

sierra::nalu::CFDMesh::set_write_flag
(C++ function), 49

sierra::nalu::CFDMesh::stkio (C++ func-
tion), 48

sierra::nalu::CFDMesh::write_database
(C++ function), 48

sierra::nalu::CFDMesh::write_database_with_fields
(C++ function), 48

sierra::nalu::CFDMesh::write_timesteps
(C++ function), 49

sierra::nalu::ChannelFields (C++ class), 60
sierra::nalu::ChannelFields::initialize

(C++ function), 61
sierra::nalu::ChannelFields::run (C++

function), 61
sierra::nalu::ConstantSpacing (C++ class),

64
sierra::nalu::ConstantSpacing::init_spacings

(C++ function), 64
sierra::nalu::GeometricStretching (C++

class), 64
sierra::nalu::GeometricStretching::init_spacings

(C++ function), 64
sierra::nalu::HexBlockBase (C++ class), 62
sierra::nalu::HexBlockBase::create (C++

function), 63
sierra::nalu::HexBlockBase::initialize

(C++ function), 63
sierra::nalu::HexBlockBase::run (C++

function), 63
sierra::nalu::HexBlockBase::SideIDType

(C++ enum), 62
sierra::nalu::HexBlockBase::XMAX (C++

enumerator), 62
sierra::nalu::HexBlockBase::XMIN (C++

enumerator), 62
sierra::nalu::HexBlockBase::YMAX (C++

enumerator), 62
sierra::nalu::HexBlockBase::YMIN (C++

enumerator), 62
sierra::nalu::HexBlockBase::ZMAX (C++

enumerator), 62
sierra::nalu::HexBlockBase::ZMIN (C++

enumerator), 62

sierra::nalu::HexBlockMesh (C++ class), 63
sierra::nalu::HexBlockMesh::BOUND_BOX

(C++ enumerator), 63
sierra::nalu::HexBlockMesh::DomainExtentsType

(C++ enum), 63
sierra::nalu::HexBlockMesh::HexBlockMesh

(C++ function), 63
sierra::nalu::HexBlockMesh::VERTICES

(C++ enumerator), 63
sierra::nalu::MeshSpacing (C++ class), 63
sierra::nalu::MeshSpacing::create (C++

function), 64
sierra::nalu::MeshSpacing::init_spacings

(C++ function), 64
sierra::nalu::MeshSpacing::ratios (C++

function), 64
sierra::nalu::NDTW2D (C++ class), 62
sierra::nalu::NDTW2D::initialize (C++

function), 62
sierra::nalu::NDTW2D::run (C++ function), 62
sierra::nalu::NestedRefinement (C++

class), 59
sierra::nalu::NestedRefinement::boxAxes_

(C++ member), 60
sierra::nalu::NestedRefinement::boxLengths_

(C++ member), 60
sierra::nalu::NestedRefinement::compute_refine_fraction

(C++ function), 59
sierra::nalu::NestedRefinement::corners_

(C++ member), 60
sierra::nalu::NestedRefinement::fluidPartNames_

(C++ member), 60
sierra::nalu::NestedRefinement::fluidParts_

(C++ member), 60
sierra::nalu::NestedRefinement::initialize

(C++ function), 59
sierra::nalu::NestedRefinement::load

(C++ function), 59
sierra::nalu::NestedRefinement::numLevels_

(C++ member), 60
sierra::nalu::NestedRefinement::numTurbines_

(C++ member), 60
sierra::nalu::NestedRefinement::perceptFilePrefix_

(C++ member), 60
sierra::nalu::NestedRefinement::process_inputs

(C++ function), 59
sierra::nalu::NestedRefinement::refineFieldName_

(C++ member), 60
sierra::nalu::NestedRefinement::refineLevels_

(C++ member), 60
sierra::nalu::NestedRefinement::run

(C++ function), 59
sierra::nalu::NestedRefinement::searchTol_

(C++ member), 60

72 Index

NaluWindUtils Documentation, Release v0.1.0

sierra::nalu::NestedRefinement::turbineDia_
(C++ member), 60

sierra::nalu::NestedRefinement::turbineHt_
(C++ member), 60

sierra::nalu::NestedRefinement::turbineLocs_
(C++ member), 60

sierra::nalu::NestedRefinement::windAngle_
(C++ member), 60

sierra::nalu::NestedRefinement::write_percept_inputs
(C++ function), 59

sierra::nalu::NestedRefinement::writePercept_
(C++ member), 60

sierra::nalu::Plot3DMesh (C++ class), 63
sierra::nalu::PreProcessDriver (C++

class), 52
sierra::nalu::PreProcessDriver::PreProcessDriver

(C++ function), 52
sierra::nalu::PreProcessDriver::run

(C++ function), 52
sierra::nalu::PreProcessingTask (C++

class), 53
sierra::nalu::PreProcessingTask::create

(C++ function), 53
sierra::nalu::PreProcessingTask::initialize

(C++ function), 53
sierra::nalu::PreProcessingTask::mesh_

(C++ member), 53
sierra::nalu::PreProcessingTask::PreProcessingTask

(C++ function), 53
sierra::nalu::PreProcessingTask::run

(C++ function), 53
sierra::nalu::RotateMesh (C++ class), 61
sierra::nalu::RotateMesh::angle_ (C++

member), 62
sierra::nalu::RotateMesh::axis_ (C++

member), 62
sierra::nalu::RotateMesh::bulk_ (C++

member), 61
sierra::nalu::RotateMesh::initialize

(C++ function), 61
sierra::nalu::RotateMesh::meshPartNames_

(C++ member), 61
sierra::nalu::RotateMesh::meshParts_

(C++ member), 61
sierra::nalu::RotateMesh::meta_ (C++

member), 61
sierra::nalu::RotateMesh::ndim_ (C++

member), 62
sierra::nalu::RotateMesh::origin_ (C++

member), 62
sierra::nalu::RotateMesh::run (C++ func-

tion), 61
sierra::nalu::SamplingPlanes (C++ class),

57

sierra::nalu::SamplingPlanes::bBox_
(C++ member), 58

sierra::nalu::SamplingPlanes::bdyType_
(C++ member), 59

sierra::nalu::SamplingPlanes::BOUND_BOX
(C++ enumerator), 58

sierra::nalu::SamplingPlanes::bulk_
(C++ member), 58

sierra::nalu::SamplingPlanes::calc_bounding_box
(C++ function), 58

sierra::nalu::SamplingPlanes::dx_ (C++
member), 58

sierra::nalu::SamplingPlanes::dy_ (C++
member), 59

sierra::nalu::SamplingPlanes::fluidPartNames_
(C++ member), 58

sierra::nalu::SamplingPlanes::fluidParts_
(C++ member), 58

sierra::nalu::SamplingPlanes::generate_zplane
(C++ function), 58

sierra::nalu::SamplingPlanes::heights_
(C++ member), 58

sierra::nalu::SamplingPlanes::initialize
(C++ function), 58

sierra::nalu::SamplingPlanes::meta_
(C++ member), 58

sierra::nalu::SamplingPlanes::mx_ (C++
member), 59

sierra::nalu::SamplingPlanes::name_format_
(C++ member), 58

sierra::nalu::SamplingPlanes::ndim_
(C++ member), 59

sierra::nalu::SamplingPlanes::nx_ (C++
member), 59

sierra::nalu::SamplingPlanes::PlaneBoundaryType
(C++ enum), 58

sierra::nalu::SamplingPlanes::QUAD_VERTICES
(C++ enumerator), 58

sierra::nalu::SamplingPlanes::run (C++
function), 58

sierra::nalu::sierra (C++ type), 51, 52
sierra::nalu::sierra::nalu (C++ type), 51,

52
sierra::nalu::sierra::nalu::get_stopwatch

(C++ function), 52
sierra::nalu::sierra::nalu::get_timer

(C++ function), 52
sierra::nalu::sierra::nalu::wind_utils

(C++ type), 51
sierra::nalu::sierra::nalu::wind_utils::get_optional

(C++ function), 51
sierra::nalu::utils::sierra::nalu::utils::check_bounds

(C++ function), 50
sierra::nalu::utils::sierra::nalu::utils::find_index

Index 73

NaluWindUtils Documentation, Release v0.1.0

(C++ function), 50
sierra::nalu::utils::sierra::nalu::utils::linear_interp

(C++ function), 51
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds

(C++ class), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::boundLimits

(C++ enum), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::CLAMP

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::ERROR

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::EXTRAPOLATE

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::LOWLIM

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::OobAction

(C++ enum), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::UPLIM

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::VALID

(C++ enumerator), 50
sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::WARN

(C++ enumerator), 50
slice_mesh command line option

-i, -input-file, 37
spec_type

input file parameter, 34

T
tasks

input file parameter, 20, 30
temperature

input file parameter, 22
transfer_fields

input file parameter, 21
Trilinos_DIR

CMake configuration, 8
turbine_diameters

input file parameter, 23
turbine_heights

input file parameter, 23
turbine_locations

input file parameter, 23

V
velocity

input file parameter, 22, 24
vertices

input file parameter, 26, 34

W
wrftonalu command line option

-coord_offset lat lon, 31
-ic, 31

-offset, 31
-qwall, 31
-startdate, 31

write_percept_files
input file parameter, 24

Y
YAML_ROOT

CMake configuration, 8

74 Index

	I User Manual
	Introduction
	Installing NaluWindUtils
	General Usage

	Tutorials
	Pre-processing for ABL precursor runs
	Wind-farm mesh refinement for Actuator Line simulation using Percept

	nalu_preprocess – Nalu Preprocessing Utilities
	Command line invocation
	Common input file options
	init_abl_fields
	mesh_local_refinement
	init_channel_fields
	create_bdy_io_mesh
	move_mesh
	rotate_mesh
	generate_planes

	nalu_postprocess – Nalu Post-processing Utilities
	Command line invocation
	Common input file options
	abl_statistics

	wrftonalu – WRF to Nalu Convertor
	Command line invocation

	abl_mesh – Block HEX Mesh Generation
	Command line invocation
	Common Input File Parameters
	Structured Mesh Generation
	Limitations
	Converting Plot3D to Exodus-II

	slice_mesh – Sampling plane generation
	Command line invocation

	boxturb – Turbulence box utility
	Command line invocation
	Sample input file

	II Developer Manual
	Introduction
	Version Control System
	Building API Documentation
	Contributing

	Nalu Pre-processing Utilities
	Task Construction Phase
	Task Initialization Phase
	Task Execution Phase
	Task Destruction Phase
	Registering New Utility

	NaluWindUtils API Documentation
	Core Utilities
	Pre-processing Utilities
	Meshing Utilities

	III Indices and Tables
	Index

